

The Better Email: On Design
A practical introduction to HTML email design and development.

Copyright © 2022 Jason Rodriguez.

All rights reserved. No part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the author.

For licensing information for teams or organizations, please contact
the author at jason@thebetter.email.

To learn more about email marketing, visit thebetter.email online.

mailto:jason@thebetter.email
https://thebetter.email

A Note on Sanity 1 ..
A Note on Resources 2 ...
Why email? 3 ..
Basic Email 7 ...
Development Tools 7 ..
The Building Blocks of Email 13 ..
Typography in Email 49 ..
Taking People Places 75 ...
Images in Email 92 ..
Understanding Mobile 113 ..
Responsive Email Design 120 ...
Different Layout Approaches 135 ...
Animation, Effects, and Interactivity 150 ..
Different Development Workflows 181 ..
Troubleshooting Emails 198 ..
Questioning Best Practices 218 ...
About the Author 221...

Table of Contents

Not sure why this broke Basic Email Development Tools
into two lines here. Tried everything to fix it but ¯_(ツ)_/¯

A Note on Sanity

If you’ve spent any time around web designers, you know they’re largely
a crazy bunch. Dealing with browser inconsistencies and keeping abreast
of new developments in technology will do that to people. Email
designers are no different. If anything, they’re likely crazier. Blame it on
Outlook and Lotus Notes.

This is just a note to say it’s OK to feel frustrated and crazy when
designing email. It’s a hard racket—accompanied by little praise from
others in the web industry (let alone most stakeholders and upper
management).

Don’t let it get to you. Email design can be amazingly powerful and you
should feel proud to be part of a vibrant and growing community.

On a related note, you shouldn’t get down when things break. And you
shouldn’t strive for pixel perfection in every email client. It’s a ghost. It
simply doesn’t exist.

The beauty of email lies in the fact that most people forget about a
campaign immediately after hitting delete. That sucks for posterity, but is
fantastic since you can always send another email and fix whatever went
wrong in the last campaign. It’s a beautifully iterative medium.  

�1

A Note on Resources

I’ve tried to make the code examples in this book as easy to understand
as possible. Unfortunately, email code can sometimes still get unwieldy.
For more complex examples or longer bits of code, I’ve included links to
examples on CodePen, which will allow you to explore, update, and
experiment with the code in real-time in your browser.

If you notice anything wrong in the examples, please don’t hesitate to
email me at jason.rodriguez@thebetter.email.

I also maintain a resources page on my website at thebetter.email/
resources. It has a ton of information on email marketing, design, and
development including links to tutorials, tools for building emails, and a
lot of code examples. It’s helped thousands of people dig in and learn
more about email and I hope it will do the same for you.

mailto:jason.rodriguez@thebetter.email
http://thebetter.email/resources
http://thebetter.email/resources

Why email?

You’ve seen the headlines, plastered on every blog in the industry:

Email is dead.

It’s in a seemingly constant cycle of being replaced by social networks,
native apps, VR, and even your refrigerator. So, why write a book about
email?

Because it fucking works, despite what anyone else says. Email is not only
alive, it’s thriving. And it won’t be going anywhere anytime soon.

Consider this:

In 2014, there were 4.1 billion active email accounts. That number is
expected to increase to 5.6 billion by 2019. On its own, Gmail accounts
for over 1 billion users. Source.

Does that sound like the death of a platform to you? It doesn’t to me.

Email is a vital part of everyone’s digital existence. It’s the gateway to the
internet. You often hear that mobile is devouring the world and native is
the way to go, but nearly every new mobile platform and app requires an

https://www.campaignmonitor.com/blog/email-marketing/2017/02/58-mind-blowing-digital-marketing-stats-you-need-to-know/

email address to participate. Without email, our digital lives would suffer
the real death.

So why is it that so many people talk about the demise of email? And how
can so many companies half-ass, or simply ignore, their email strategy?

Because email is hard.

Web and app developers are always surprised when they tackle their first
email campaign. Surprised at the outdated approach to coding, the lack
of support for standard HTML and CSS, and the sheer number of email
clients that all render code in different and frustrating ways.

And this is just the design and development phase. Understanding your
audience, envisioning great content, writing killer copy, and worrying
about deliverability—there seems to be no end to the unique challenges
of email.

But, email doesn’t have to be so hard (at least the coding part). The past
few years have seen huge advances in coding methods that have helped
alleviate some of the challenges inherent in the medium. More
importantly, a growing number of email designers are openly sharing
their knowledge and building a community around email design. These
two factors are helping to solve the problem of email design.

While email clients will always be in a state of flux—and our code right
along with them—there is a solid foundation of coding techniques that
can be used to make email design easier.

This book is a guide to those techniques.

It distills a lot of the information out there into a practical reference for
nearly any design and coding challenge you’ll face as an email designer.
It’s meant for the people in the trenches, digging through code every
day. Maybe we’ll talk about strategy and content some other time.  

 

Chapter 1

Basic Email
Development Tools

The Better Email on Design

Chapter 1

Basic Email
Development Tools

Before we dig into any code, though, we need to set up an environment
for developing emails.

Fortunately for us, little is needed to get started. Unless you really want to,
you won’t need to worry about installing complicated applications,
command line tools, or a boat load of dependencies.

At the most basic level, all you need to code an email is a text editor and
a web browser. The text editor is for writing the code and the browser is
for previewing your work.

Text Editors
Honestly, it doesn’t really matter that much which text editor you choose.
I’ve used several over the years, including BBedit, Sublime Text, Coda,
Dreamweaver, Atom, Brackets, and even Visual Studio. They all have
their charms (and plenty of problems), but they all get the job done.

�7

http://www.barebones.com/products/bbedit/
http://www.sublimetext.com/
http://panic.com/coda/
http://www.adobe.com/products/dreamweaver.html
http://atom.io/
http://brackets.io/
http://msdn.microsoft.com/en-us/vstudio

The Better Email on Design

So long as you can create, edit, and save HTML files, you’re good to go.
Some people like having extra tools to navigate emails, see the structure
of tables, or even help generate code. Try a few on for size and see what
fits.

As of writing, I rely on two text editors on a regular basis. The first is
Sublime Text which is rock-solid, has a great community around it, and a
ton of tools to improve workflows.

The second text editor I use—and would have a hard time living without—
is Litmus Builder. Builder is an online text editor built solely for email
development and, as such, has custom tools for making email
development as effortless as possible. The killer feature is that it’s built on
the Litmus platform, so you can instantly preview your email campaign in
over 70 (at the time of writing) different email clients.

�8

https://sublimetext.com/
https://litmus.com/email-builder

The Better Email on Design

Honestly, though, it doesn’t matter which text editor you choose. Just
choose one that works with your budget, feels comfortable, and doesn’t
stand in your way.

Web Browsers

The same can be said for browsers. I love both Firefox and Chrome’s
developer tools, but I usually work in Apple’s Safari. Really, any modern
web browser will work for most things. If you’re going to be doing
anything fancy with CSS3 or animations (we’ll get to those later), you’ll
likely need to use a Webkit-based browser. Which means Chrome,
Chromium, Opera, or Safari.

Again, as long as you can open up an HTML file and resize a window,
you’re ready to start designing and building emails.

Other Tools

Unless you’re exclusively sending plain text email, your design will likely
involve graphic elements. These can take the form of photos, illustrations,
icons, or (cringe) image-based buttons.

There are a variety of tools out there for all price points. Here are a few of
my favorites:

�9

The Better Email on Design

• Affinity Designer + Photo: Super powerful tools for editing vector
and bitmap work, respectively. I really, really love Designer for
vector illustrations, as their tools make more sense than Sketch’s.
And it’s a lot lighter-weight than Adobe Illustrator.

• Sketch: Elegant, fast, and continuously improved by the team at
Bohemian Coding. Perfect for vector graphics, but useless for
editing photographs or creating animated GIFs. Mac only.

• Photoshop: The industry stalwart. A bit long in the tooth, but can’t
be beat for sheer power and number of tools. Also necessary if you
want to create, edit, and optimize animated GIFs. Cross platform.

• Pixelmator: Surprisingly powerful for both bitmap and vector work,
but lacks any animation capabilities. Much more affordable than
Photoshop and is incredibly useful for quick edits. Mac only.

• Paint.NET: When I was on Windows, I used to love me some
Paint.NET. Very capable and free, absolutely recommend it to
anyone on a PC with a small budget.

No matter which program you use to create images, one of the most
important things to do is to compress those images before uploading
them to a server and linking to them in an email campaign. As
subscribers become more mobile, bandwidth constraints play a larger
role in email design. Image compression is a vital part of keeping email
designs quick to load and subscribers happy.

My favorite tools for compressing images are:

�10

https://affinity.serif.com/en-us/
http://bohemiancoding.com/sketch/
http://www.adobe.com/products/photoshop.html
http://www.pixelmator.com/
http://www.getpaint.net/

The Better Email on Design

• ImageOptim: The best lossless image compressor for Mac. Plus,
they now have a Sketch plugin that automatically compresses your
images on export. Pretty nifty.

• JPEGmini: The cross-platform option, this one is also great (but
costs money).

• TinyPNG: A great option if you’re only using PNG files. It also has a
handy Photoshop plugin.

This book won’t go into how to use these specific tools. Just be aware
that, if you’re working as a professional email designer, you need to be
comfortable with whatever tools you are using. Study them, practice
using them, and get fast with them. Your clients (or boss) will thank you.

�11

https://imageoptim.com/
https://imageoptim.com/sketch
http://www.jpegmini.com/
https://tinypng.com/

 

Chapter 2

The Building Blocks
of Email

The Better Email on Design

Chapter 2

The Building Blocks of Email

Email is a weird world, one that often relies on outdated practices to
accomplish seemingly simple tasks. Don’t let that put you off, though—
things are slowly getting better and there's a surprising amount that you
can accomplish in HTML email campaigns.

Just be warned: if you’re coming into email design with prior experience
as a web designer, you’re going to have to push some of your instincts
aside and relearn how to do even the most basic stuff. Which brings us to
one of the most important points in this book…

Email is not the web.

Most web designers complain about the half dozen or so browsers that
they need to support. Even with the quirks inherent in some of the
browsers (looking at you, Internet Explorer), coding for the web and
getting consistent results across browsers isn’t terribly difficult anymore.

Contrast that with email clients. There are dozens of popular email clients
that need to be taken into account. Starting up a new Litmus test, at the
time of this writing, allows you to test in over 70 different email clients.

�13

The Better Email on Design

And, unlike the web, there are no agreed upon standards that email client
vendors need to support. Sure, you will be writing HTML and CSS, but
every single email client supports a limited subset of both. Rarely do any
email clients support the same HTML elements or CSS properties. That
makes things… complicated, to say the least.

Web ≠ Email

As a web designer, your first thought might be to structure and code an
email in the same manner as a web page. Unless your skills plateaued
sometime around 2002, that means marking your content up with
semantic elements and using external stylesheets to properly style
everything.

Unfortunately, few email clients properly support semantic elements (at
least for structuring content). While we can (and will) use semantic
elements for text, HTML5 sectioning elements like header, article,
aside, and footer have very limited support, and will be avoided for
the time being.

To successfully build HTML email campaigns, you will be trading in what
you know of web design for what everyone else knew of web design
before the era of web standards. Although we'll look at a few approaches
to creating emails using more modern markup and methods, the main

�14

The Better Email on Design

techniques used in this book will rely on HTML tables for building out the
structure of email campaigns.

At a very high level, here’s what you can expect:

You may be used to marking up tabular data on the web, but email
design is its own art form. It requires dropping some table elements,
structuring your document and tables in a very specific way, and making
extensive use of inline-styles and deprecated HTML attributes to make
things work.

Don't get too down about the state of email, though. We've seen some
major improvements from email clients recently (looking at you, Gmail)
that will allow us to clean up our markup and use some slightly more
modern methods in our campaigns. And, while we won't rely on semantic

On the web In email

External CSS Embedded and inline CSS

Floats The align attribute and table cells

Shorthand CSS properties Longhand CSS properties

Box model support Table layouts

JavaScript CSS animations

Interactive forms Checkbox hacks

Web standards Chaos and fun

�15

The Better Email on Design

sectioning elements, we will absolutely use semantic text elements to
make our emails more accessible, as well as the occasional embedded
CSS and div element for certain techniques.

A Basic Document Structure

Before we add any content to our emails or start styling that content, we
need to have a solid base on which to build. Let's look at how a basic
HTML document for email development should be structured.

At it’s heart, every email campaign is an HTML file. HTML—which stands
for Hypertext Markup Language—is the de facto language of the web. It
allows us to write and structure content in a way that both humans and
computers can easily read. Each HTML file ends with the .html file
extension. So, if you’re working on a monthly newsletter campaign, you
might have a file called november-2017-newsletter.html.

HTML files require a few pieces of code to be included in order to work
properly. The following section goes over those pieces and provides a
good base document on which to build.

HTML doctype

There’s been a surprising amount written about which doctype to use for
email. Unsurprisingly, there’s no consensus on which is the best. For a
long time, most people either a) used no doctype at all or b) rallied

�16

The Better Email on Design

around the XHTML 1.0 Transitional doctype. Today, I heartily recommend
transitioning to using the HTML5 doctype.

<!DOCTYPE html>

Not only is it more succinct, it ensures that content is rendered just as well
as when using the older XHTML 1.0 Transitional doctype, if not better.
And, moving forward, if email clients add better support for HTML5 and
CSS3, you’ll be covered.

All that being said, don’t live or die by the doctype. It’s largely included to
ensure a few clients render a very small number of elements properly and
that you have something to validate your markup against.

Don’t worry too much about validating an email campaign. While running
your code through the W3C Markup Validation Service can be useful to
identify potential problems with an email, HTML email design is such a
hack-riddled art that it’s rare when an email template fully validates. Use a
validator to uncover things like missing closing elements or a stray quote
mark, but don’t slam your head against your desk when a well-tested
email campaign won’t validate. The ultimate judge of an email design is
testing it across email clients, either in Litmus or on actual devices.

You’ll also want to include the lang attribute in your root HTML element.
This is useful for assistive technologies and helping to ensure certain
characters are properly rendered (some glyphs, quotation marks,

�17

http://validator.w3.org/
https://litmus.com/

The Better Email on Design

hyphenation, spaces, etc.). Since I send to a mostly English-speaking
audience, I always use the following:

<html lang="en">

The head Section

The head of your document is where you can set up document-specific
information for an email. It is also where you include some CSS, like reset
styles and styles that progressively enhance any essential, inlined styles.

I typically include a title element and populate it with either the sender
name or some descriptive text about the campaign’s content. While email
clients don’t display title information, it can be useful when campaigns
are viewed as a web page (which happens surprisingly often). Depending
on your email service provider, you can use their templating language to
automatically populate the title with a subject line, sender name, or
something pulled from your database.

<title></title>

Next, we'll include three meta tags. The first sets the document’s charset
to ensure that symbols like HTML character entities are properly
displayed. The second sets the document’s viewport sizing, which is
essential when building responsive emails (which you should be doing,
and which is what is taught in this book). The third is specific to Microsoft
devices and clients to keep them playing nicely with our code.

�18

The Better Email on Design

<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-
scale=1">
<meta http-equiv="X-UA-Compatible" content="IE=edge" />

This second element is probably the most important. It tells the device
that your email should adapt to the width of the device itself, allowing it
to flow when the device’s size changes.

The last part of the head section is a style block. This is where any non-
essential CSS goes. Most of your CSS will be inlined on specific HTML
elements themselves, but the style block in the head will contain CSS
resets you need to include, as well as CSS that progressively enhances
content or is meant for mobile email clients.

<style type="text/css">
/* CLIENT-SPECIFIC STYLES */
body, table, td, a { -webkit-text-size-adjust: 100%; -ms-text-
size-adjust: 100%; }
table, td { mso-table-lspace: 0pt; mso-table-rspace: 0pt; }
img { -ms-interpolation-mode: bicubic; }

/* RESET STYLES */
img { border: 0; height: auto; line-height: 100%; outline: none;
text-decoration: none; }
table { border-collapse: collapse !important; }
body { height: 100% !important; margin: 0 !important; padding: 0
!important; width: 100% !important; }
</style>

�19

The Better Email on Design

The head is naturally followed by the body and closing html elements.
When put together, a solid base document for any email campaign looks
like the following:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title></title>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
 <meta name="viewport" content="width=device-width,
initial-scale=1">
 <meta http-equiv="X-UA-Compatible" content="IE=edge" />
 <style type="text/css">
 /* CLIENT-SPECIFIC STYLES */
 body, table, td, a { -webkit-text-size-adjust: 100%;
-ms-text-size-adjust: 100%; }
 table, td { mso-table-lspace: 0pt; mso-table-rspace:
0pt; }
 img { -ms-interpolation-mode: bicubic; }

 /* RESET STYLES */
 img { border: 0; height: auto; line-height: 100%;
outline: none; text-decoration: none; }
 table { border-collapse: collapse !important; }
 body { height: 100% !important; margin: 0 !
important; padding: 0 !important; width: 100% !important; }
 </style>
 </head>
 <body style="margin: 0 !important; padding: 0 !important;">
 </body>
</html>

View on CodePen

�20

https://codepen.io/rodriguezcommaj/pen/cd34c3d0412f6e463b2e6eecf3dc838e/

The Better Email on Design

You'll notice that I've included both margin and padding styles inlined
on the body tag. These are just to ensure that no email clients add extra
white space around our campaigns.

Preview Text

One thing you'll nearly always want to add to your email is preview text.
Preview text is the bit of text you see below the sender name and subject
line in the inbox of an email client. Without coding anything, the first bit
of copy in an email is automatically pulled into the inbox in most email
clients.

However, it's almost always better to control that copy and make it work
well with the subject line.

�21

The Better Email on Design

To add preview text, which is then hidden in the actual email view, you
can use the following code:

<div style="display: none; max-height: 0; overflow: hidden;">
 Preview text message goes here
</div>

By using display: none;, max-height: 0;, and overflow:
hidden;, whatever text you use will be displayed in most email clients.
Different email clients display different character counts for the preview
text, so it’s worth testing out copy to see what works. One really cool trick,
though, is to use really short preview text to draw attention to your
campaign.

Since most emails aren’t currently using this trick, they pull in a lot of text.
Adding some space behind a short message is a good way to visually call
attention to your campaign.

The way to do this is by taking advantage of the fact that combining two
HTML character entities, you can get a character-wide space. By
combining dozens of those HTML character entities, you can get dozens
of character-wide spaces, effectively blocking any body copy in your
email from displaying behind your preview text.

�22

The Better Email on Design

The two HTML character entities used are the non-breaking space
() and the zero-width non-joiner (‌). You wrap that in the
same code as the preview text to ensure that it’s hidden from view in the
email.

<div style="display: none; max-height: 0px; overflow: hidden;">
 ‌ ‌ ‌ ‌ ‌&nbs
p;‌ ‌ ‌ ‌ ‌ &z
wnj; ‌ ‌ ‌ ‌ ‌
 ‌ ‌ ‌ ‌ ‌&nbs
p;‌ ‌ ‌ ‌ ‌ &z
wnj; ‌ ‌ ‌ ‌ ‌
 ‌ ‌ ‌ ‌ ‌&nbs
p;‌ ‌ ‌ ‌ ‌ &z
wnj; ‌ ‌ ‌ ‌ ‌
 ‌ ‌ ‌ ‌ ‌&nbs
p;‌ ‌ ‌ ‌ ‌ &z
wnj; ‌ ‌ ‌ ‌ ‌
 ‌ ‌ ‌
</div>

View on CodePen

It’s a big chunk of code, but definitely worth it.

Revisiting Tables
When was the last time you marked up content using HTML tables?
Unless you’re building dashboards or work in the scientific community

�23

https://codepen.io/rodriguezcommaj/pen/3f676961184226b32e8610c1d7b726ca/

The Better Email on Design

presenting tons of data, it has likely been quite a while since you used
HTML tables for anything.

That’s about to change. As an email designer, you’ll be drowning in
tables. You won’t be able to wash the stench of tables off for years to
come. Scared yet? Don’t be—tables are easy.
You may have seen the following table structure before:

<table>
 <thead>
 <tr>
 <th>Header A</th>
 <th>Header B</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <td>Footer A</td>
 <td>Footer B</td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td>Body A</td>
 <td>Body B</td>
 </tr>
 </tbody>
</table>

In this example, you see most HTML table elements represented,
including the table, thead, tr, th, tfoot, tbody, and td elements.
When working on the web, it’s necessary to use these elements to give

�24

The Better Email on Design

context to any tabular data that is being presented. However, in the email
world, email clients don’t really care about context or semantics. Which
actually works out nicely—we effectively only need to worry about three
elements for marking up any and all content: the table, tr, and td
elements. There are some techniques that rely in the th element, but
those are beyond the scope of this book. Check out this article for more
information.

Table Elements

It's essentially pointless to use any other table-related elements in an
email design. The only thing you’ll be adding is unnecessary markup,
making templates harder to maintain. So don’t do it. Only use table, tr,
and td in an email campaign. So, at a very basic level, an email campaign
would be structured in a table that looks like this:

<table>
 <tr>
 <td>Content</td>
 </tr>
</table>

That’s it, we’re done. That’s all you need to know to build email
campaigns.

Just kidding, there’s a bit more to it than that. Like…

�25

http://labs.actionrocket.co/td-or-not-to-td-that-is-now-a-question

The Better Email on Design

Table Attributes

According to the Mozilla Developer Network, there are 9 attributes
which can be applied to tables:

• align
• bgcolor
• border
• cellpadding
• cellspacing
• frame
• rules
• summary
• Width

Of these, we will be using everything except frame, rules, and
summary. You can safely ignore all three. We'll also be adding one more
to make our emails more accessible. We'll get to that in a minute.

The align, border, cellpadding, cellspacing, and width attributes
are essential structural components for email. And the bgcolor attribute
is great when it comes to styling email layouts.

These attributes are typically applied to two elements: both the table
and the td. Generally speaking, you will apply border, cellpadding,
cellspacing, and width to every table in your design. Sometimes you
will need to align a table, too. For table cells, you will often need to
include align attributes as well as the occasional width and bgcolor if

�26

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table

The Better Email on Design

you are attempting to constrain a cell’s width or apply a background
color in your design.

If that sounds confusing, this example should make it easier to
understand:

<table border="0" cellpadding="0" cellspacing="0" width="100%">
 <tr>
 <td>
 <table border="0" cellpadding="0" cellspacing="0"
width="600">
 <tr>
 <td>
 <table border="0" cellpadding="0"
cellspacing="0" width="100%">
 <tr>
 <td>
 <!-- CONTENT GOES HERE -->
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </td>
 </tr>
</table>

You can see in the example above that we have a container table with
nested tables running two levels deep. All three tables have the border,
cellpadding, cellspacing, and width attributes defined. While the align

�27

The Better Email on Design

and bgcolor attributes are not set, we will see how those come into play
later on.

It’s important to note that I have used both fluid and fixed widths for the
tables. The outer and innermost tables are both fluid, as denoted by the
width="100%" attribute. The middle table, however, is fixed to 600
pixels wide with width="600". This is because not all email clients
understand percentage-based widths. Therefore, that table acts as a
container table for the fluid content within. Later on, when talking about
responsive emails, we will see how this container table comes into play
with the help of CSS selectors and the media query. We’ll also look at
different approaches to laying out emails that use fluid-by-default
techniques and even (nearly) table-free techniques.

Accessibility in Tables

An important aspect of email design (and any type of design) is
accessibility. Accessibility is the idea that things we put online (including
email) should be accessible to the widest range of users possible. We
never want to exclude users from understanding and using our content.
When it boils down to it, it's discrimination, whether or not it's intentional.

There are a few things we'll cover throughout this book to make sure our
campaigns are accessible as possible. The first has to do with using tables
to structure our campaigns.

�28

The Better Email on Design

As mentioned before, tables are traditionally used to display tabular data.
Think of a spreadsheet. That spreadsheet has a bunch of information in it,
and column and row headings to provide some context for that
information. By default, someone with a disability that requires the use of
a screen reader will have a table read out to them at length. The screen
reader software will go through the table and every column, row, and
table cell, reading the contents of each element out loud.

For a great illustration of this, check out this fantastic blog post from
Mark Robbins at Rebel. You can hear exactly how a screen reader
presents unoptimized tables to the user.

This is less-than-ideal for email, because the information in an email is
usually not tabular data. We want to be able to prevent screen reader
software from reading every table element out loud and allow them to
skip to the content instead. To do this, we can apply the role attribute
with a value of presentation to every table in our email.

<table border="0" cellpadding="0" cellspacing="0" width="100%"
role="presentation">

It's important to note that it does need to be applied to every table.
Unfortunately, that behavior isn't inherited by child elements of the main
container table. With that applied, screen reader software will skip to the
content of an email. It's the single easiest way to make your campaigns
more accessible for your subscribers, and should be baked into every
campaign you create moving forward.

�29

http://blog.rebelmail.com/accessibility-in-email-part-ii/
https://www.rebelmail.com/

The Better Email on Design

Inline Styles

Before moving on with using tables to structure our layouts, we need to
talk about where and how to apply styles in HTML email.

On the web, we have three methods for including CSS in a document.

1. External stylesheets: Allow you to keep your styles in a separate file,
making maintenance and updates quick and easy.

2. Embedded style blocks: Styles applied within a style section,
typically in the head of the HTML document. They are specific to
the HTML document, but still separate styles and content in a
respectable manner.

3. Inline styles: Styles applied directly on an HTML element, making
styles much harder to maintain.

Most modern websites opt for using external stylesheets, since they make
maintenance far easier than the other two options. Separating content
from presentation is one of the foundational principles of the web
standards movement and should be adhered to whenever possible.

Unfortunately, email client vendors have no concept of web standards.
Some email clients will block an email from linking to and downloading
an external stylesheet. Some email clients will strip out the head section
of an HTML document, meaning embedded style blocks living up there

�30

The Better Email on Design

will also be killed. Therefore, if we want to reliably style our emails, we are
left with the least desirable option: inline styles.

As mentioned above, inline styles are applied directly to an HTML
element. For example, let's say we wanted to change the color of some
text. We could do that by adding an inline style to a span tag in a larger
block of copy.

This is some copy. This is red.
And this is the default color.

That is an inline style. While not ideal (it generally makes troubleshooting
and maintenance more time-consuming), it is the most reliable way to
add styles to a campaign so that those styles display across the widest
range of email clients.

We will still use embedded styles for certain tasks, but get used to using
inline styles, too. Nearly all of our default styling will be applied inline
directly to HTML elements.

Google’s Gmail is traditionally the main culprit when it comes to
removing embedded styles. However, an update to Gmail that launched
in the fall of 2016 remedied this behavior. While you can now safely use
embedded CSS to target elements in an email instead of relying on inline
styles, there are still a handful of email clients that don’t play well with
embedded styles. For this reason, we’ll still use inline styles for critical
styling, with embedded styles providing mostly reset and progressive

�31

The Better Email on Design

enhancement functionality. It’s the approach you’re most likely to
encounter out in the wild and is still the most bulletproof method of
styling email content.

Structuring Table Layouts

So, getting back to tables.

Different types of email call for different layouts. You may opt for a nice,
minimal, single-column layout or a 2x3 product grid. You could have
article sections mixed in with image-heavy features. Regardless of the
content of your campaign, you’re going to have to use tables to structure
everything.

This is accomplished with a few things: inline styles, the align attribute,
nested tables, and stacked tables. Let’s take a look at each in turn to see
how they allow us to structure email layouts.

Inline Styles for Table Structures

If you’ve been following along, you know we’ll be applying the majority
of our styles inline on HTML elements. But, what CSS properties will we
actually be using? When it comes to using tables for structuring our
content, the single most useful CSS property is padding.

�32

The Better Email on Design

Combined with specified widths on tables or table cells and the align
attribute, the padding property does 90% of the work in any email
design. The padding property allows us to—you guessed it—add padding
between sections of our email. Whitespace is a vital component in any
design and padding is how we can best add that whitespace.

But, why not use the cellpadding or cellspacing attributes? That’s a
valid question. They are inherent to tables, but have two major
drawbacks:

1. You can’t specify different values for different sides of an element.
2. If you’re using nested tables or specifying a lot of widths, keeping

track of the math can get complicated.

That first point is the crux for me. When designing an email, I want full
control over the spacing between elements on all four sides: the top,
right, bottom, and left. Neither cellpadding or cellspacing allow you
that level of granularity. The padding property, however, works like a
charm. When I’m specifying cellpadding and cellspacing in this
book, you’ll always see that the value is set to zero. This is simply to
override any padding or spacing an email client automatically adds to a
table or cells. It’s a reset that allows us to use padding to add space
instead.

There are some designers who will argue against relying on padding
since it doesn’t have support everywhere. While that is true, the email
clients that lack support also lack large user bases. The main suspects are

�33

The Better Email on Design

Lotus Notes versions 6 and 7. Both hate padding with a passion, which is
OK, because everyone hates Lotus Notes more. Outlook 2007+ has some
issues with padding, but they are minimal and there are hacks to work
around them.

Padding can be applied in one of two ways: by explicitly declaring the
padding for each individual side of an element, or by using the
shorthand property.

Explicit:

<td style="padding-top: 10px; padding-right: 20px; padding-
bottom: 10px; padding-left: 20px;"></td>

Shorthand:

<td style="padding: 10px 20px 10px 20px;"></td>

Generally speaking, some email clients don’t handle shorthand
declarations well. However, where padding is supported, I’ve never seen
issues using the shorthand declaration. It’s a great way to keep your code
concise. Just be sure to declare each side within the shorthand, as some
clients can choke on the truncated version of a shorthand property, which
explicitly declares two values and relies on the rendering engine to infer
the others. Using shorthand, each of the four values correspond to a
particular side, in this order:

padding: top right bottom left;

�34

The Better Email on Design

On the web, you can safely write the first two values and let the browser
fill in the blanks. So this:

padding: 10px 20px;

Becomes this:

padding: 10px 20px 10px 20px;

Just don’t do that in email, and you’ll be fine. Or at least test your emails
before sending if you do use that method.

Getting back to using padding and tables. Let’s say we have an email
layout that has a featured article section, which consists of a headline,
some text, and a link. Without any real structure applied, that markup
might look like the following:

<table border="0" cellpadding="0" cellspacing="0" width="100%"
role="presentation">
 <tr>
 <td>
 <table border="0" cellpadding="0" cellspacing="0"
width="600" role="presentation">
 <!-- FEATURED ARTICLE -->
 <tr>
 <td>
 <table border="0" cellpadding="0"
cellspacing="0" width="100%" role="presentation">
 <tr>

�35

The Better Email on Design

 <td>
 <!-- FEATURED HEADLINE -->
 </td>
 </tr>
 <tr>
 <td>
 <!-- SOME COPY TEXT -->
 </td>
 </tr>
 <tr>
 <td>
 <!-- A LINK -->
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <!-- /FEATURED ARTICLE -->
 </table>
 </td>
 </tr>
</Table>

View on CodePen

If we were to preview that in a browser, all of the content would be
jammed together.

�36

https://codepen.io/rodriguezcommaj/pen/be6151c3ff73ae56cde0d8b0791f5c53

The Better Email on Design

If we want to space out that content, we can use padding to add
whitespace between elements. There are two places we typically add this
padding.

You’ll notice that we have a few tables here: an overall container table, an
inner container table to constrain width to 600 pixels, and then a third,
fluid table for the actual content.

The best place to apply padding is to the table cell in which the actual
content resides. For example, on the featured headline section, we can
add whitespace around that headline using padding on that table cell:

<td style="padding: 10px 20px 10px 20px;">
 <!-- FEATURED HEADLINE -->
</td>

Using the padding shorthand, we can add ample white space to a
design. Now, when previewed in a browser, the content sections are
discrete and easy to read.

�37

The Better Email on Design

Aligning Table Content

Separating our content with padding gets us half of the way there when it
comes to structuring an email. The second half consists of aligning the
content.

It's rare that every single thing in an email is left-aligned. More often than
not, you will need some copy centered and some pulled to the right, too.
For this, we rely on the align attribute applied to (where else?) a table cell.

<td align="center" style="padding: 10px 20px 10px 20px;">
 <!-- FEATURED HEADLINE -->
</td>

View on CodePen

In the example above, the featured headline will be centered on the
screen.

The align attribute accepts three possible values: left, center, and
right. I bet you can guess what each value does.

One thing to keep in mind is that some versions of Outlook will apply a
container table's alignment to all children of that table. This sucks since,
in most emails, the container table will be centered to keep the entire
email in the middle of a preview pane. Without declaring alignment on
any nested content, every element would be centered, too.

�38

https://codepen.io/rodriguezcommaj/pen/76f4bff23ae1cb951466ff15f7b9b4f5

The Better Email on Design

If you want to align content within a centered table either left or right,
then you need to apply the appropriate alignment to that child table cell.
Don't ever assume that Outlook (or any email client) will understand your
intentions without explicitly declaring them in your code.

Multiple Columns in Email

Although I love single-column layouts, it’s sometimes necessary to have
multiple columns in an email. Multiple columns are a great way to present
a lot of information in a very compact manner. And, if you’re working in
retail, they’re almost required for showing off your products (whether or
not that’s always a good tactic).

When it comes to coding multi-column emails, there’s not really anything
special going on. Following the patterns laid out in the preceding
sections, we will wrap our content in a 100% wide container table,
followed by a fixed width table to constrain all of our content.

Then, we can apply percentage-based widths to the table cells for our
columns.

You can also use pixel-based widths for your columns. However, keeping
most of your tables percentage-based (except for those containers)
makes responsive design much easier. Generally speaking, responsive
design relies on overriding certain values to make them fluid. So,

�39

The Better Email on Design

overriding one value instead of multiple values makes things less
complicated.

<table border="0" cellpadding="0" cellspacing="0" width="100%"
role="presentation">
 <tr>
 <td align="center">
 <table border="0" cellpadding="0" cellspacing="0"
width="600" role="presentation">
 <!-- TWO COLUMN SECTION -->
 <tr>
 <td align="center" valign="top" style="padding:
20px 10px 60px 10px;">
 <!-- TWO COLUMNS -->
 <table border="0" cellpadding="0"
cellspacing="0" width="100%" role="presentation">
 <tr>
 <td>
 <!-- LEFT COLUMN -->
 <table border="0" cellpadding="0"
cellspacing="0" width="47%" align="left" role="presentation">
 <tr>
 <td>
 <table border="0" cellpadding="0"
cellspacing="0" width="100%" role="presentation">
 <tr>
 <!-- CONTENT -->
 </tr>
 </table>
 </td>
 </tr>
 </table>
 <!-- RIGHT COLUMN -->
 <table border="0" cellpadding="0"
cellspacing="0" width="47%" align="right" role="presentation">

�40

The Better Email on Design

 <tr>
 <td>
 <table border="0" cellpadding="0"
cellspacing="0" width="100%" role="presentation">
 <tr>
 <!-- CONTENT -->
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <!-- /COLUMN SECTION -->
 </table>
 </td>
 </tr>
 </table>

View on CodePen

Along with our typical align and width attributes, it’s not a bad idea to
include the valign attribute on the table cell. Multiple columns are
usually the breaking point in most email designs, and vertically aligning
your columns can help squash design oddities before they crop up.

While some designers will add their content directly to the outer column
table cells, I prefer including the 100% wide content table above for
added control over that content. If we want to add some whitespace

�41

https://codepen.io/rodriguezcommaj/pen/3fce8c87b7a8718867e9386c5fe330de?editors=1000

The Better Email on Design

around the column content, we now have two options: on that column’s
table cell, or on any of the table cells within the content table. Plus, we
can keep our components within that content table modular, too.

Dumping all of your content directly in the column table cell would
require you to use hard-coded line breaks for adding spacing between
sections in that column, which isn’t very maintainable.

Sure, the content table adds some markup, but the flexibility and power it
affords us far outweighs the slightly bloated code.

You can use the exact same method for introducing a third column.

<table border="0" cellpadding="0" cellspacing="0" width="100%"
role="presentation">
 <tr>
 <td align="center">
 <table border="0" cellpadding="0" cellspacing="0"
width="600" role="presentation">
 <!-- THREE COLUMN SECTION -->
 <tr>
 <td align="center" valign="top" style="padding:
20px 10px 60px 10px;">
 <!-- THREE COLUMNS -->
 <table border="0" cellpadding="0"
cellspacing="0" width="100%" role="presentation">
 <tr>
 <td>
 <!-- LEFT COLUMN -->
 <table border="0" cellpadding="0"
cellspacing="0" width="33%" align="left" role="presentation">

�42

The Better Email on Design

 <tr>
 <td>
 <table border="0" cellpadding="0"
cellspacing="0" width="100%" role="presentation">
 <tr>
 <!-- CONTENT -->
 </tr>
 </table>
 </td>
 </tr>
 </table>
 <!-- CENTER COLUMN -->
 <table border="0" cellpadding="0"
cellspacing="0" width="33%" align="left" role="presentation">
 <tr>
 <td>
 <table border="0" cellpadding="0"
cellspacing="0" width="100%" role="presentation">
 <tr>
 <!-- CONTENT -->
 </tr>
 </table>
 </td>
 </tr>
 </table>
 <!-- RIGHT COLUMN -->
 <table border="0" cellpadding="0"
cellspacing="0" width="33%" align="right" role="presentation">
 <tr>
 <td>
 <table border="0" cellpadding="0"
cellspacing="0" width="100%" role="presentation">
 <tr>
 <!-- CONTENT -->
 </tr>
 </table>

�43

The Better Email on Design

 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <!-- /COLUMN SECTION -->
 </table>
 </td>
 </tr>
 </table>

View on CodePen

When you start adding multiple columns to your email, the math can
sometimes get hairy. Some email clients (yep, Outlook) have problems
with multiple columns. This typically happens because Outlook can add
padding, margins, or borders—or screw up the math—between table cells.
When this happens, columns will shift or drop below their intended
positions.

A good way to account for this is to declare the widths of your columns to
be slightly less than the total width of your email. In the examples above, I
use 48% and 33% for two- and three-columns layouts, respectively. This is
just a bit of insurance baked into the email, so even if extra spacing is
added, things display as intended.

�44

https://codepen.io/rodriguezcommaj/pen/18829e83c6aa41ddce49b11de62367f4?editors=1000

The Better Email on Design

Modularity in Email

All of the examples above are basically single content sections, not entire
emails. When it comes to building up entire email templates, my best
piece of advice is to make them modular. The techniques for laying out
tables described above allow you to build emails as collections of
modular components.

Essentially, each horizontal section in your email is its own modular
component. Those modular components consist of their own table
structure which contains all of that section’s content, just like we looked at
in this chapter. Then, those modular sections are stacked to build an
entire template.

Let’s take a basic email newsletter as an example. The modular
components, housed in their own 100% wide tables, would be broken
down as follows:

• Header section
• Hero/featured item section
• Article section
• Article section
• Closing CTA section
• Footer section

�45

The Better Email on Design

To make things more visual, here’s an illustration of that layout, with the
modules identified.

While we could very easily wrap every content section as table rows and
cells of a single parent table, using stacked, modular tables has a number
of advantages.

First, they are reusable and allow us to mix and match different
components to build out emails for a variety of purposes. We can easily
build up a library of content components that can be swapped in and out
of templates to cover pretty much any use case. This is massively helpful
when you get into more complex email systems, too, for example when
working on emails generated by automatic build systems.

�46

The Better Email on Design

Second, they make troubleshooting problems in an email much easier.
Since each component is separate, we can quickly identify where a visual
problem is. Instead of spending time hunting down what’s causing a
problem in one big table, we can use that time to fix the actual problem
itself, no matter which module is affected.

Third, using stacked, modular tables makes it easier to deal with a weird
Outlook bug that can break some designs. Basically, Outlook has an
internal page height (based on the Word rendering engine) that can
break really long emails. If your entire email is contained within one table,
things end up looking fairly ugly when broken. However, using the
modular method gives Outlook more natural breaking points, keeping
your design largely intact.

You don’t have to house each section in its own modular component, but
it definitely makes things a lot easier. Just take into account your
workflow, that of your team’s, and what you need to accomplish before
deciding on your approach to email design.

Every email campaign is basically a remix or combination of the above.
Using single or multiple columns allow you to build up a near infinite
variety of campaigns, especially when you keep your sections and
components modular. Once you have your layout structured, it’s time to
start adding and styling content.

In the next chapter, we’ll take a look at how to style the single most
important element of any email campaign: text.  

�47

 

Chapter 3

Typography in Email

The Better Email on Design

Chapter 3

Typography in Email

There’s an old article from the design studio Information Architects that
makes a great point:

Web design is 95% typography.

As an offshoot of web design, the same is true about email. No matter
what your message, you need to be able to communicate it clearly using
type on screen. Clear type is only half the battle, though. We want to
make email a delightful experience for our subscribers, so making that
type accessible, beautiful, and enjoyable to read is our ultimate goal.

This chapter takes a look at how we can create accessible, readable, and
aesthetically pleasing email campaigns that work well across email
clients, even when using web fonts.

Accessible Typography in Email
As mentioned in the last chapter, one of our main goals when developing
email campaigns is to make those emails accessible to the widest range
of users possible. This is where semantic elements come into play in
email.

�49

https://ia.net/topics/the-web-is-all-about-typography-period/

The Better Email on Design

Up until recently, email designers generally avoided using semantic
elements like heading and paragraph tags because of the way most
email clients handled them. Email clients and browsers naturally apply
default styles to those elements which, when unaccounted for by the
designer, can create undesirable results in a design. Copy was generally
just dumped into a table cell, without any thought as to providing
contextual information about that copy to anyone using a screenreader.

We want our copy to include that contextual information—or semantic
value—so we will mark up copy with the appropriate HTML elements.
Fortunately, for most email campaigns, that really only entails using the
following tags:

• Heading tags: These are h1 through h6 depending on the level
heading you need. Headings help create hierarchy and are
indispensable to people using screen reader software.

• Paragraph tags: The humble p tag, which denotes a block of copy,
typically longer than one sentence.

• Span tags: The span tag is useful for smaller bits of copy or as a
hook to style anything within a larger heading or paragraph tag.

We can also make use of tags for meant for denoting emphasis, most
notably the emphasis tag itself (em) and the strong tag (strong).

While there are other semantic elements we can use, like date, time,
address, and blockquote, we'll be focusing on headings, paragraphs,
and span tags in this book. Depending on your content, it may be worth

�50

The Better Email on Design

adding in major sectioning elements like header, footer, main,
article, and section to provide extra semantic value for screen
readers. Not all screen readers and email clients support those elements,
but they will simply be ignored in those cases. However, for applications
that do support them, it’s a fantastic way to add extra structure and
navigational waypoints to your campaigns. For the most part, you can use
the techniques I'm about to describe for styling those elements, too.

Since we're using semantic elements, screen readers will create the
proper hierarchy in our emails and convey that to the user, allowing them
to more easily navigate and understand the content in our email
campaigns.

An example of a semantically correct section of an email looks like this
(taken from my own email newsletter):

<h1 style="font-size: 36px; font-weight: bold; line-height:
36px; margin: 40px 0px 100px 0px;">
 The Intermittent Newsletter

 <span style="color: #ff2e66; font-size: 18px; font-weight:
normal;">by Jason Rodriguez
</h1>
<h2 style="font-size: 24px; line-height: 28px; margin: 60px 0px
40px 0px;">
 The Nerves of a New Product Manager
</h2>
<p style="margin-bottom: 20px;">
 Some of you may know that I've changed roles at work. Where
once I was the community manager (god, I hate that term) and
marketing team member—among other things—I am now a product

�51

The Better Email on Design

manager focusing on improving and building out the Litmus
Community. Also, among other things. We all wear a lot of
hats.
</p>
<p style="margin-bottom: 20px;">
 When I made that switch late last year, I started keeping a
kind of diary online, in the guise of a Medium publication,
recording my thoughts on making the transition to product
management. I've since stopped posting there, but want to
continue talking about the subject on my own site.
</p>

View on CodePen

Overriding Default Styles

You can see in the example above that there are a few style rules applied
to those semantic elements.

I mentioned before that email clients will apply default styles to your
HTML. Headings are typically displayed larger and in bold text,
differentiating them from paragraph text. And, since both headings and
paragraphs are block-level elements, margins are usually added to them
as well, creating white space in an email.

While this is a nice default feature of a rendering engine, we typically
want to override that behavior and give ourselves a blank canvas on
which to paint our own styles. For now, we will simply override the

�52

http://https//codepen.io/rodriguezcommaj/pen/e955b6349a4bcd75fb53802202fb0b22?editors=1000

The Better Email on Design

margins on headings and paragraphs by including the margin property
as an inline style.

<h1 style="margin: 0;">This is a heading.</h1>
<p style="margin: 0;">This is a paragraph.</p>

If you want to include white space around those elements, simply use the
margin shorthand property to add in white space.

<p style="margin: 0 0 20px 0;">This is a paragraph with 20
pixels of white space applied to the bottom of the element.</p>

That covers white space issues across clients, but how about actually
styling the look of the text?

Applying Styles to Text

There are generally two ways in which you will apply styles to text in an
email.

The first is by applying text styles to the td element that contains that
text, then using semantic elements within that table cell.

<td style="color: #000000; font-family: sans-serif; font-size:
18px; font-weight: normal; line-height: 24px;">
 <p style="margin: 0;">This is a paragraph.</p>
</td>

�53

The Better Email on Design

The second is by setting all text styles on the semantic elements
themselves.

<td>
 <p style="color: #000000; font-family: sans-serif; font-
size: 18px; font-weight: normal; line-height: 24px; margin:
0;">This is a paragraph.</p>
</td>

While it's a personal preference, I encourage you to apply the default text
styles you want on the table cell, then override where necessary on
specific elements within that table cell. This approach has two major
benefits:

1. Lightweight markup: Setting styles in one place means less code
duplication on multiple elements, keeping your code lean.

2. Maintainability: Since styles are set in one place, the look of the
email is easy to update as you're changing values in one spot
instead of many.

In the example taken from my own newsletter, I don’t rely on tables.
Instead, the default text styles are applied to a div element that wraps all
of the text. The styles shown above are overrides for those specific
elements, most notably to make the headings more prominent.

I still use the margin property on semantic elements within that table
cell, but the bulk of the work happens within the table cell.

�54

The Better Email on Design

This approach will be applied to all of our text with the exceptions of:

• Links, which will be styled using the a tag. We’ll get to those later.
• Text within a section that needs special styling, which will be

handled with the span tag.
• Things like dates, times, phone numbers, etc. that some email

clients insist on making links.

Basic Font Styles

To cover our bases, if a table cell contains text, it should always have the
following styles defined:

• color
• font-family
• font-size
• font-weight
• line-height

Let’s look at an unstyled block of text:

<td><p>The next time you email your subscribers, stop and think
before telling your boss that you sent out the latest blast.
Instead, show her that you value your subscribers as people by
saying you sent the latest message to your audience. You sent a
campaign. You sent the next part in an ongoing conversation.
</p></td>

�55

The Better Email on Design

When viewed in a browser or most email clients, it will be displayed like
so:

Let’s say we want to make the text lighter, use a sans-serif font, increase
the size a bit, and add some line-height to make the reading
experience more comfortable. We can accomplish this with the
properties listed above:

<td style="color: #666666; font-family: sans-serif; font-size:
18px; font-weight: normal; line-height: 28px;”><p style=“margin:
0;>The next time you email your subscribers, stop and think
before telling your boss that you sent out the latest blast.
Instead, show her that you value your subscribers as people by
saying you sent the latest message to your audience. You sent a
campaign. You sent the next part in an ongoing conversation.</
p></td>

View on CodePen

�56

https://codepen.io/rodriguezcommaj/pen/091d8a15468d1bf1c929174776420c16?editors=1000

The Better Email on Design

That’s better, huh? You could just copy and paste that formula into all of
your emails, but then you wouldn’t learn anything, would you? Let’s take a
look at each of those properties and see how they work.

Color

The color property controls the color of the text inside a given HTML
element. It accepts a variety of values, including:

• The CSS color keyword (e.g. red, yellow, blue).
• A three-character hexadecimal value (e.g. #f00 produces red).
• A six-character hexadecimal value (e.g. #ff0000 also produces

red).
• An RGB or RGBa value (e.g. rgb(0, 0, 0) produces black,

rgba(0, 0, 0, 0.5) produces black at half opacity).

Like most other things, these all work on the web but not in every email
client. The safest way to declare colors in HTML email is by using the six-
character hexadecimal value. Therefore, anytime a color is declared in
this book, it will take the form:

color: #ffffff;

Some email clients, typically ones which use the WebKit rendering
engine, can handle the other methods, too. If you know your audience is
largely opening emails in WebKit-based email clients (Apple Mail, iOS

�57

The Better Email on Design

Mail), then you can use something like RGBa, which is useful for adding
transparency to text.

Font Stacks

The font-family property controls what typefaces are used to display text.
If left undefined, operating systems and email clients will default to
system fonts (e.g. Times New Roman, Helvetica, San Francisco, etc.) that
come installed on most operating systems. You should absolutely define
a font stack—an explicitly stated preferred ranking of fonts—for your text.

A font stack allows you to declare back up fonts for when a preferred font
isn’t installed on a computer or, in the case of web fonts, is unable to be
downloaded. When declaring your font stack in the font-family property,
you put your preferred font first, followed by increasingly generic backup
options:

font-family: Futura, 'Trebuchet MS', Arial, sans-serif;

In this instance, if Futura is installed, text will be displayed using that font.
In Futura’s absence, it will then fall back to Trebuchet MS first, Arial
second, and whatever sans-serif font is installed on the operating system
as a last resort.

You will notice that Trebuchet MS is surrounded by quotes. This is
because it consists of two separated words. Many fonts have complex

�58

The Better Email on Design

names and, if they include spaces, will need to be wrapped in single
quotes. This handles any email clients that can’t properly parse spaces in
the font-family property.

Font Sizes

On the web, there are a number of ways to declare font sizes. You can use
keywords like large or xx-small, fixed units like px, or relative units like
em and rem. Since we’re working towards always building responsive
emails, you would be right in thinking that relative units like em and rem
would be ideal. However, a lot of email clients don’t understand font
sizing unless declared using pixels.

Therefore, all of our font sizes will use the px value:

font-size: 18px;

You can make that font size as big or little as you want, but you should
keep a few things in mind.

First, some mobile devices (looking at you, iPhone and iPad)
automatically resize text that is smaller than 14px in an effort to make it
easier to read on smaller screens. Anything below 14px will be resized up
to 14px. So, if you’re using small text for something like a disclaimer, you
will need to account for this in your code or risk your design being
broken.

�59

The Better Email on Design

This can be accomplished by using the text-size-adjust CSS
property, prefixed for the appropriate rendering engine. WebKit on iOS is
the main perpetrator, but Windows Mobile does something similar. As an
example, we can target both. You can do this in one of two places.

As a style reset in the head of our document:

<head>
 <style type=“text/css”>
 body, table, td, a {
 -webkit-text-size-adjust: 100%;
 -ms-text-size-adjust: 100%;
 }
 </style>
</head>

Or inline on an element in case the head is stripped out of the document:

<td style="-webkit-text-size-adjust: 100%; -ms-text-size-adjust:
100%;">CONTENT</td>

Since these prefixed properties are only understood by rendering
engines that don’t strip embedded CSS, you can safely declare them in
the head of your HTML document, keeping your inline styles cleaner and
easier to read.

Second, you should use a comfortable font size for all readers. A good
baseline is to have text around 16-18px. This is big enough for most

�60

The Better Email on Design

readers to easily read, while not being so big it only allows you to fit 20
characters on a line.

Finally, don’t make your text too big. While you want your headlines to
stand out from your body copy, don’t make them absurdly massive
(unless dictated by your design team or branding guidelines). Use other
properties like font-weight and color to create hierarchy, in tandem with
font-size.

When we look at making emails responsive, we’ll come back to font-
size and see how we can change the size of type on different devices.

Font Weights

The font-weight property allows you to specify how heavy a font
should appear. The weight refers to the thickness of the lines that make
up a letter. A great typeface will have a lot of different weights available.
Other typefaces will only have one or two.

A font’s weight can be declared using either a keyword (e.g. normal,
bold, bolder) or a numerical value (e.g. 100, 200… 900). In most cases,
you will likely only use the normal or bold keyword. However, if you are
using a typeface with a lot of variations, say Proxima Nova, you may want
to rely on numerical values for font weights, since it allows greater
flexibility of design and access to all of the available weights.

�61

The Better Email on Design

Let’s say we have a large headline set in a thin variation followed by some
smaller body copy that needs to be set in a medium weight. You can
mark that up like so:

<tr>
 <td style="color: #222222; font-family: ‘Proxima Nova’,
Arial, sans-serif; font-size: 32px; font-weight: 100; line-
height: 32px;">
 <h1 style=“margin: 0;”>Blastphemy</h1>
 </td>
</tr>
<tr>
 <td style="color: #666666; font-family: ‘Proxima Nova’, Arial,
sans-serif; font-size: 18px; font-weight: 400; line-height:
22px;”><p style=“margin: 0;”>The next time you email your
subscribers, stop and think before telling your boss that you
sent out the latest blast. Instead, show her that you value your
subscribers as people by saying you sent the latest message to
your audience. You sent a campaign. You sent the next part in an
ongoing conversation.</p></td>
</tr>

The typical design will likely call for a bold headline and normally
weighted text. This is where you can simply use keywords:

<tr>
 <td style="color: #222222; font-family: Arial, sans-serif;
font-size: 32px; font-weight: bold; line-height: 32px;">
 Blastphemy
 </td>
</tr>
<tr>

�62

The Better Email on Design

 <td style="color: #666666; font-family: Arial, sans-serif;
font-size: 18px; font-weight: normal; line-height: 22px;">
 The next time you email your subscribers, stop and think
before telling your boss that you sent out the latest blast.
Instead, show her that you value your subscribers as people by
saying you sent the latest message to your audience. You sent a
campaign. You sent the next part in an ongoing conversation.
 </td>
</tr>

Both approaches are perfectly valid, it all comes down to how specific
you need to be with weights and whether you want to keep track of a
bunch of number values or a few keywords.

Line Heights

The line-height property allows you to specify the amount of space
between lines of text. Again, you can specify values a few ways, including
a unit-less number, fixed values like px, and relative units like em and %.

On the web, it is common practice to declare line-heights using a unit-
less number to avoid inheritance issues and unpredictable results.
Unfortunately, not all email clients understand unit-less numbers. So, your
safest bet is to use a pixel value when setting the line-height property, like
so:

<td style="line-height: 20px;"></td>

�63

The Better Email on Design

The space between lines has a very real correlation to how easily we can
read text. If text has too little space between lines, it feels cramped and
uncomfortable to read. If there is too much space, the eye is forced to
make too large of movements between lines and text becomes
disjointed.

The line height of a block of text works in tandem with the font size of
that text, as well as the width of the block of text itself. Typically speaking,
smaller text should have larger line heights, while larger text can afford to
have smaller line heights. My general rule of thumb is to have the line
height 4-8 pixels larger than the font-size for most normal text. For
headings, that will drop to either equal that value or even be two or four
pixels smaller than the font-size value. However, you should always test
out different line height in your designs to see what feels comfortable to
read.

Font Styles

While not mentioned above as an absolutely necessary style to apply,
another useful CSS tool is the font-style property. This property allows
you to specify one of three variations of a font: normal, italic, or
oblique.

Without declaring a font style, text will be displayed using the normal
value. Both italic and oblique are a means to a similar end in that
they will slant a typeface. Italic fonts typically use a properly designed,

�64

The Better Email on Design

italic variation that is included in a typeface. Oblique fonts rely on
skewing the regular version of a typeface to create slanted fonts.

You will likely only ever use the italic value to make your text, you
know, italic. This can be useful to provide emphasis on a word or phrase,
or to set a particular section apart from the surrounding text, for example,
in a photo caption or a disclaimer.

If you want to accomplish the same thing using a semantic tag, you can
use the em, or emphasis, element. This is my preferred method, as it adds
added contextual information for people with disabilities relying on
screen reader software.

Targeting Specific Copy

Every once in a while, you will need to style some text separately from
what surrounds it. While we’ve looked at using the em and strong tags to
semantically markup that text, we often need a more generic solution to
targeting and styling small snippets of text. That’s where the span tag
comes in.

Let’s say we have some text:

<td style="color: #666666; font-family: Arial, sans-serif; font-
size: 18px; font-weight: normal; line-height: 22px;">The next
time you email your subscribers, stop and think before telling
your boss that you sent out the latest blast. Instead, show her
that you value your subscribers as people by saying you sent the

�65

The Better Email on Design

latest message to your audience. You sent a campaign. You sent
the next part in an ongoing conversation.</td>

You want to emphasize the line, ‘You sent the next part in an ongoing
conversation.” Similar to how we apply styles to a table cell, we can
simply wrap that line in a span and set the font-style to italic.

<td style="color: #666666; font-family: Arial, sans-serif; font-
size: 18px; font-weight: normal; line-height: 22px;">The next
time you email your subscribers, stop and think before telling
your boss that you sent out the latest blast. Instead, show her
that you value your subscribers as people by saying you sent the
latest message to your audience. You sent a campaign. <span
style="font-style: italic;">You sent the next part in an
ongoing conversation.</td>

Now, that line will inherit the values set for every other property in the
table cell but will be emphasized, too. If we wanted to also change the
color of that text, or make it bold, we can apply those rules on the same
span. We can override any rules set in the table cell or add CSS on top of
the inherited styles.

Admittedly, that’s not the best example. If I were coding that in real life,
I’d use the em tag, which automatically makes the text italic for nearly all
rendering engines. Although, if I wanted to change the color of that text,
too, I’d still use an inline style on the em tag.

A better example comes from my own newsletter, which has a title with a
byline, which is all marked up as a level 1 heading.

�66

The Better Email on Design

<h1 style="font-size: 36px; font-weight: bold; line-height:
36px; margin: 40px 0px 100px 0px;">
 The Intermittent Newsletter

 <span style="color: #ff2e66; font-size: 18px; font-weight:
normal;">by Jason Rodriguez
</h1>

I use a line break (br) to dump the byline onto its own line, then wrap that
in a span, where I apply different color, font-size, and font-
weight values to override the ones set on the parent h1. In either
example, though, you can see how useful a well-placed span is.

This is the best way to fine-tune specific parts of our copy. If you wanted
to get really crazy and make your email look like a ransom letter, you
could wrap individual letters, words, and phrases in their own span and
apply different styles to each.

The Custom Font Problem

Earlier, I talked a bit about declaring font stacks. When declaring a font
stack, you specify your preferred font followed by a series of backup
fonts. Without doing anything on our end, the display of those fonts
depends entirely on what fonts are installed on a user’s machine.

A lot of brands pay large sums of money to license a typeface. Each
typeface has its own personality, and brands use typefaces to express
their personality. However, in many cases, most users do not have these

�67

The Better Email on Design

typefaces installed on their computers. So, even if a designer was to
specify one of these typefaces in their font stack, there is a good chance
that one of the backups will be displayed instead.

How can we, as email designers, work around this? There are currently
two solutions which you’ll encounter.

Using Images

Until a few years ago, most email designers would turn to including that
text as part of an image and then just dumping the image inside of an
email. Hell, a lot of major brands still take this route.

While using images in place of HTML text allows you to throw any
typeface you want into a design, it has some major drawbacks:

• A lot of email clients block images by default, which means that
your subscribers won’t see any of that pretty text unless they take
some extra action to display images.

• Forcing your mobile users to download a ton of images is just plain
mean, especially as data plans become more expensive.

• Images aren’t as easy to adjust for mobile devices as they typically
just get scaled down, making that text harder to read.

• Images pose accessibility issues, even with alt text specified.

�68

The Better Email on Design

Unless it’s absolutely necessary, you should avoid using images to serve
any text. HTML text trumps image-based text every time. Just use good
fallbacks and get comfortable with the fact that some subscribers will see
those fallbacks.

When it comes to fallback fonts, you should strive to pick fonts that are
similar to your preferred font. Use characteristics like x-height, letter
spacing, color, contrast, and overall style to determine solid fallbacks.

Using Web Fonts

The best, and only real, alternative is to use what are known as web fonts.
Web fonts are fonts that are specifically licensed to be served on
websites (and in email). The fonts themselves are not installed on a user’s
computer, but are instead temporarily downloaded and displayed from a
server just like any other asset, like an HTML file or an image. This allows
us to get around the problem of users not having a wide variety of fonts
installed.

In order to use a web font, we need to have a way to call that font from
within an email and signal it to download and display. There are
essentially three ways to do this:

• Using the @font-face rule.
• Using a <link> to an external stylesheet.
• Using the @import feature.

�69

The Better Email on Design

Let’s see how each of these work in practice.

@font-face Method

The @font-face rule allows you to build up your own custom font by
linking to actual font files within CSS and specifying things like font-
family, font-style, and font-weight for each variation you need. It
is the most involved option as you need to link to a few different font
formats for compatibility when building your web font rule.

Let’s say we wanted to use Futura in an email. Using the @font-face rule,
we would declare the following within a style block in the head of an
email:

@font-face {
 font-family: ‘Futura’;
 src:
 url(‘https://yourserver.com/fonts/futura-regular.woff')
format('woff'),
 url(‘https://yourserver.com/fonts/futura-regular.ttf')
format('truetype');
 font-weight: 400;
 font-style: normal;
}

Then, in our table cell, we can call that font at the beginning of our font
stack:

�70

The Better Email on Design

<td style="color: #000000; font-family: Futura, 'Trebuchet MS',
Arial, sans-serif; font-size: 18px; font-weight: 400; line-
height: 22px;">CONTENT</td>

If we wanted to include multiple weights or variations of that font, then
we would need to write additional @font-face rules for each one,
specifying the variation via the font-weight or font-style properties.
This can lead to some bloated code and is, quite frankly, not always the
best route.

<link> Method

The second method uses the link tag to pull in an external stylesheet
that essentially holds all of those @font-face rules for us. This method
works best with services that host web fonts for you, like Google Web
Fonts. If you’re coming from the web, chances are you’ve seen this
method before. It looks like this:

<link href='http://fonts.googleapis.com/css?family=Open+Sans:
700,400' rel='stylesheet' type='text/css'>

After that link is added to the head of your document, you can call the
font directly in your inline styles:

<td style="color: #000000; font-family: 'Open Sans', Helvetica,
Arial, sans-serif; font-size: 18px; font-weight: 400; line-
height: 22px;">CONTENT</td>

�71

https://fonts.google.com/
https://fonts.google.com/

The Better Email on Design

This method, while still not great, does have better support than the
vanilla @font-face option.

@import Method

Similar to the previous method, using @import allows us to pull in an
external stylesheet. The difference is that it is pulled into a style block
within the head instead of directly into the head itself.

<head>
 <style type=“text/css”>
 @import url(http://fonts.googleapis.com/css?
family=Open+Sans:700,400);
 </style>
</head>

Now, you can use it the same as the methods before, by simply declaring
that font at the beginning of your font stack.

While this method has the best support across email clients, it still doesn’t
work everywhere. That’s why choosing good fallback fonts is so damned
important.

The Outlook Problem

Aside from a lack of universal support, the biggest problem with using
web fonts is that some versions of Microsoft Outlook will not only ignore

�72

The Better Email on Design

the web fonts, but will fall back to Times New Roman instead of any
specified fallbacks.

Although there are a few ways to prevent this, my preferred method is to
wrap any web font imports in their own @media block, like so:

<style>
 @media screen {
 @import url('https://fonts.googleapis.com/css?
family=Anonymous+Pro:400,700');
 }
</style>

For whatever reason, Outlook will essentially ignore that web font and
simply fall back to your other font choices.

There is a lot more to typography outside the scope of this book. If you
really want to dig in, I highly recommend Paul Airy’s book, A Type of
Email. For now, this should get you started in building robust, text-centric
email campaigns. Next, we’ll talk about using that text to take people
places by means of the most important component of the internet: the
hyperlink.

�73

https://gumroad.com/l/yxFxD%23
https://gumroad.com/l/yxFxD%23

 

Chapter 4

Taking People Places

The Better Email on Design

Chapter 4

Taking People Places

Aside from having access to all the world’s information, the beauty of the
internet is in the ability to connect people and take them places all on a
simple screen. This ability is made possible by the humble, but
unbelievably powerful, anchor tag. And, just like on the internet at large,
the a tag is what makes email one of the most valuable communications
channels today.

Providing information in an email is always good, but anyone sending
email wants the recipient to take some action. These actions, this
engagement, is facilitated by the link. So, it’s important to understand
how best to use and style links when developing an email campaign.

Basic Text Links

At the most basic level, links are applied to text within the body of an
email. These work in exactly the same way as on the web.

Read the article now

By default, a link will inherit the basic font styles from its parent element
which, in most cases, will be the table cell containing our text. Since it is

�75

The Better Email on Design

an anchor tag, the operating system, browser, email client, or rendering
engine will apply additional styles to the element. That usually looks
something like this:

Ah, the old default link styles of days past!

While the blue underlined links of yore work beautifully in plain text
emails, most people need to apply additional styling to those links so that
they feel a part of the overall design of a campaign.

We can apply any number of inline styles on an anchor tag. Typically, you
will want to override the color property. Often, you will want to remove
the underline, as well. This is easily accomplished via the text-
decoration property.

<a href=“http://example.com” style="color: #6aa7a4; text-
decoration: none;">Read the article now

Feel free to play with other CSS properties like font-weight, font-
style, and even CSS3 like text-shadow. Just don’t go crazy with those
shadows–your subscribers’ eyes will thank you.

�76

The Better Email on Design

Link Clusters

One thing to keep in mind with basic text links, especially as more people
are checking their email on mobile devices, is that tightly packed groups
of links are frustrating to actually use. Usually referred to as link clusters,
these groupings typically manifest themselves in two ways.

The first is when using larger blocks of text with multiple links throughout:

The second is usually found in sub-navigation. You’ve likely seen an email
similar to the following:

�77

The Better Email on Design

In both cases, you can see that links are tightly packed. Especially for
large-thumbed folks, these links can be mind-numbingly frustrating to
interact with. Hoping to be taken to one page, subscribers accidentally
tap one of the surrounding links and are taken to another. This kind of
frustration is what leads to deleted emails and unsubscribes.

The best way to avoid this kind of frustration is by adding space around
your text links.

When dealing with large blocks of text, this can largely be handled by
increasing the line-height of the text. Experiment with increasing the
value of line-height on your table cell until links feel comfortable to
use in that copy block. If your design allows it, you can also increase the
font-size to make the actual target bigger and easier to tap.

Honestly, for sub-nav elements, my first recommendation would be to just
get rid of them. A lot of times, these links are forced into a campaign by a
marketing team or stakeholder, regardless of the fact that most
subscribers don’t ever use them. While it’s not true for every audience, I’d
wager that most emails would be better off without this kind of cruft.

But, if your boss is breathing down your neck and insists on having those
damned links in the email, here’s what you should do: add some space
around the links!

In this case, there are typically two ways to handle adding space to your
navigation links–depending on how you initially coded them.

�78

The Better Email on Design

A lot of email designers will code those links inline, all in one table cell,
with non-breaking spaces separating the links. In this case, the obvious
remedy is adding more non-breaking spaces, sometimes to an absurd
extent, until there is ample whitespace between links on both desktop
and mobile.

The better, and more flexible solution (especially when you start adding
in responsive styles), is to code each link in its own table cell. Then, similar
to how we do most things in email, we can add additional styles to those
cells. In this case, we can increase the padding on the table cells, spacing
them to our heart's delight.

Still, you may want to consider just dropping them anyways...

iOS Blue Links

A curious thing happens with text on some mobile devices. Apple’s iOS
operating system, in an attempt to help out the user, will automatically
turn certain types of text into links. Without you ever wrapping the text in
an anchor tag, you will likely see the following in ugly, blue, underlined
text:

• Dates
• Phone numbers
• Addresses

�79

The Better Email on Design

• Times
• Email addresses

The reasoning is sound on Apple’s part: that’s all useful information that
can be added to your contacts, calendars, or mapped out, so why not
make that process easier? Unfortunately, this tends to anger a lot of
designers and can, in some cases, turn out to be a disaster for users.

Let’s say you have a footer section with a dark background. Naturally,
you’re complying with CAN-SPAM rules and include your mailing
address. Now, when viewed on an iOS device, the blue links are nearly
unreadable:

�80

The Better Email on Design

Wouldn’t it be great if we could override these automatic link styles?
Well, we can.

There are two approaches to handling blue links.

The first is by including a reset style for those blue links in the head of
your HTML document:

/* iOS BLUE LINKS */
a[x-apple-data-detectors] {
 color: inherit !important;
 text-decoration: none !important;
 font-size: inherit !important;
 font-family: inherit !important;
 font-weight: inherit !important;
 line-height: inherit !important;
}

View on CodePen

This is a quick and easy way to kill blue links on iOS. However, since this
targets Apple’s operating system specifically, it won’t have an effect on
some other clients that add blue links.

If you encounter blue links outside of iOS, you can add a style in that
targets content that is likely to be auto-linked and override the default
styles of any added links.

�81

https://codepen.io/rodriguezcommaj/pen/d39f4bc41dfee4c7dba4ba5ee22d7cd6

The Better Email on Design

We don’t want to run the risk of overriding any other link styles in text
blocks, so instead of targeting the table cell, it’s a good idea to just wrap
any of the above mentioned suspects (date, time, address, etc.) in a span
and target that with an appropriately named class:

 1234 Main St.

 Anywhere, MA 56789

Then, in the head of the document, we can target any links
within that class and set our styles:
<style type=“text/css”>
 .blue-links a {
 color: #888888;
 text-decoration: none;
 }
</style>

Now, any automatically linked text will appear as intended. Our designs
will still be readable and, more importantly, useful as users will still be
able to press that element and add it to their contacts just like normal.

Gmail Blue Links

In October of 2017, Google started rolling out an update to Gmail that
adds similar auto-linking behavior. Fortunately for us, a nearly identical fix
as the one for iOS was quickly discovered. It applies the same CSS rules
but has different targeting:

u + #body a {

�82

The Better Email on Design

 color: inherit;
 text-decoration: none;
 font-size: inherit;
 font-family: inherit;
 font-weight: inherit;
 line-height: inherit;
}

View on CodePen

You will need to add id=“body” to the body tag of your email for this to
work. The fix works because Gmail changes the doctype of an email to an
underline tag (u). Then, by targeting the body using that id attribute and
any links contained within, we can override any applied styles with those
CSS properties.

One thing to note is that you cannot chain the Gmail and iOS fixes
together into one CSS declaration. This is because the iOS blue links fix
uses the attribute selector method of targeting (those square brackets).
Gmail, unfortunately, does not currently support selecting HTML
elements using attribute selectors and will rip that style out of the
document, leaving your links as blue as can be. Separating them, though,
allows you to keep your links looking good in both clients.

Buttons

Aside from linked images (which we’ll discuss in the next chapter), the
other major link type in an email is the button. Just like on the web,

�83

https://codepen.io/rodriguezcommaj/pen/d39f4bc41dfee4c7dba4ba5ee22d7cd6

The Better Email on Design

buttons are a great way to style links and draw attention to some action
you want a user to perform.

However, due to the limitations of email clients (both through CSS
support and image-blocking behaviors), buttons in an email campaign
require very specific considerations.

Image-Based Buttons

The old way of including a button was to use an image for the button and
wrap that image in an anchor tag. While this has the benefit of allowing
you to style your button however you want (I’m looking at you, Photoshop
layer styles), a lot of email clients block images by default. More often
than not, your beautifully beveled button wouldn’t even be seen by a
subscriber. Think they would actually press it?

Unless you absolutely have to heavily style a button, you should avoid
image-based buttons at all costs. There’s a better way…

Bulletproof Buttons

Bulletproof buttons refer to a method of building and styling buttons
using code instead of images. This has a few benefits, depending on the
approach:

• Your buttons are visible even when images are disabled

�84

The Better Email on Design

• Emails are quicker to build (no time-consuming trips in and out of
Photoshop)

• Emails are easier to maintain and customize
• Your buttons can be adjusted for mobile devices, making them

easier to use

There are typically three approaches when it comes to crafting
bulletproof buttons, each with its own advantages and disadvantages.
While there are a few hybrid solutions, too, these three approaches are
the most accessible and can easily be implemented in any email
campaign.

VML-Based Buttons

The first approach is the classic bulletproof button. Made popular by
Campaign Monitor developer Stig Morten-Myre, these bulletproof
buttons rely on Microsoft's proprietary language VML (Vector Markup
Language). Using Outlook-specific conditional comments, the VML wraps
a simple, styled link tag to get the buttons working in most email clients:

<div><!--[if mso]>
 <v:roundrect xmlns:v="urn:schemas-microsoft-com:vml"
xmlns:w="urn:schemas-microsoft-com:office:word" href="https://"
style="height:40px;v-text-anchor:middle;width:200px;"
arcsize="10%" strokecolor="#1e3650" fill="t">
 <v:fill type="tile" src="https://i.imgur.com/0xPEf.gif"
color="#556270" />
 <w:anchorlock/>

�85

https://twitter.com/stigm

The Better Email on Design

 <center style="color:#ffffff;font-family:sans-serif;font-
size:13px;font-weight:bold;">Show me the button!</center>
 </v:roundrect>
 <![endif]--><a href="https://"
 style="background-color:#556270;background-
image:url(https://i.imgur.com/0xPEf.gif);border:1px solid
#1e3650;border-radius:4px;color:#ffffff;display:inline-
block;font-family:sans-serif;font-size:13px;font-
weight:bold;line-height:40px;text-align:center;text-
decoration:none;width:200px;-webkit-text-size-adjust:none;mso-
hide:all;">Show me the button!</div>

View on CodePen

Here’s what that button looks like:

Does that markup look confusing? It does to me, too. I'd wager there are
about ten people in the world that could eloquently explain VML. I'm
definitely not one of them. This leads us to the biggest problem with
VML-based buttons:

They are incredibly difficult to update and maintain.

The second problem is that they aren't the most flexible when it comes to
building responsive emails. However, they do work most everywhere,

�86

https://codepen.io/rodriguezcommaj/pen/ccaed359b6065a5067340d06abcf73a5?editors=1000

The Better Email on Design

even in Outlook. And you can pull off some fancy effects using VML. I'd
recommend using them when you need either a) full Outlook
compatibility or b) near-Photoshop styling capabilities.

Fortunately, Campaign Monitor has a handy tool for generating the
markup for you without having to learn the ins-and-outs of VML. Head on
over to buttons.cm to get going.

Padding-Based Buttons

The second approach is to use a single-row, single-cell table with a link.
Styling is then applied to the table cell to structure the button, with
additional styles added to the link itself (color, font-size, etc.). It looks
something like this:

<!-- PADDING-BASED BUTTON -->
<table border="0" cellspacing="0" cellpadding="0">
 <tr>
 <td bgcolor="#357edd" style="padding: 20px 40px 18px
40px; -webkit-border-radius: 8px; border-radius: 8px;"
align="center">
 <a href="https://thebetter.email" target="_blank"
style="font-size: 18px; font-family: sans-serif; color: #ffffff;
text-decoration: none; display: block;">Read more here →</
a>
 </td>
 </tr>
</table>

View on CodePen

�87

http://buttons.cm/
https://codepen.io/rodriguezcommaj/pen/f4e3fd7ee7629b3671586588c05af855

The Better Email on Design

You can see that this markup is incredibly easy to update and maintain
long-term. It uses the exact same styles as everything else in our
campaigns and we also have the added benefit of a nice, flexible button
when we start making things responsive. What's more, we can use
background images on the button and can pull off some interesting looks
by applying styles to both the table cell and the anchor tag.

However, there are two main drawbacks to this approach:

1. Some email clients don't support padding, so the buttons will
collapse

2. Only the text of the link is clickable, not the entire button

While that second point puts some designers off, I have yet to hear a
subscriber actually complain about it. If you want to only use HTML and
CSS and still need your entire button clickable, it's time to look at our final
method.

Border-Based Buttons

These buttons take an almost identical approach.

<!-- BORDER-BASED BUTTON -->
<table border="0" cellspacing="0" cellpadding=“0">
 <tr>
 <td>

�88

The Better Email on Design

 <a href="https://thebetter.email" target="_blank"
style="font-size: 18px; font-family: sans-serif; color: #ffffff;
text-decoration: none; border-radius: 8px; -webkit-border-
radius: 8px; background-color: #357edd; border-top: 20px solid
#357edd; border-bottom: 18px solid #357edd; border-right: 40px
solid #357edd; border-left: 40px solid #357edd; display: inline-
block;">Read more here →
 </td>
 </tr>
</table>

View on CodePen

The major difference is that, instead of the structure being built with
padding on the table cell, it is built with extremely thick borders on the
anchor tag itself. With all of the styling on the anchor tag, the entire
button ends up being clickable. And, our button still looks great:

The drawbacks here are that Outlook doesn't always like those large
borders (shrinking them down), background images aren't supported,
and you can't apply more advanced styles (splitting them between the
table cell and anchor tag).

�89

https://codepen.io/rodriguezcommaj/pen/e3a5ba525de3f07531ac2ac090756172?editors=1000

The Better Email on Design

Keep in mind, there are other solutions out there for building buttons in
email. Some email designers take a hybrid approach and combine
elements of the padding- and border-based buttons, along with some
conditional styles for Outlook. It all depends on your needs and where
your audience is opening emails.

In the next chapter, we'll look at how to build on the solid, text-based
campaigns you're hopefully coding by adding in everyone's favorite
element: images.

�90

 

Chapter 5

Images in Email

The Better Email on Design

Chapter 5

Images in Email

I love a good, all-text email. If you can pull off an elegant, interesting
design using only type then I’ll buy you a beer.

That’s just me, though. Most people like seeing a beautiful photograph or
a quirky illustration in an email, too. In this chapter, we’ll take a look at
how best to incorporate images in our campaigns. We’ll start by looking
at which image formats work best, how to mark them up, using retina-
ready images, and what to do when those damned email clients block
our pretty pictures.

Which formats work best?
How many file formats are there for images? A dozen? Two dozen? More?

Fortunately for us, we only really need to concern ourselves with three
image formats for everyday use. When it comes to email design, you'll
likely only ever encounter the following:

• JPEG
• PNG
• GIF

�92

The Better Email on Design

You may run into the occasional BMP, and more recently SVG files, but
email designers have largely standardized on the three formats above.

Let’s look at the benefits and drawbacks of each.

JPEG (.jpg)

The JPEG file format, which stands for Joint Photographic Experts Group,
is a great option when you need to include complex graphics like
photographs or illustrations. Really, anything with either a lot of colors or
subtle gradations between colors or shades.

JPEGs are lossy, which means that, when compressed to save space, they
discard information that can lead to a loss in quality or the introduction of
visual artifacts. However, unless you’re using extreme compression
settings, most people won’t notice the loss in quality.

They are perfect for pictures of people, product shots, and intricate
illustrations. I’d wager that most images you see in an email are likely
JPEGs. They’re a great option. More importantly, JPEGs are supported
across virtually every email client.

The two main drawbacks of JPEGs are that they do not support
transparency and they cannot be animated. If we want transparency, we’ll
want to use…

�93

The Better Email on Design

PNG (.png)

The Portable Network Graphics format, or PNG for short, is similar to
JPEG in that it is a great option for anything with lots of colors. It works
equally well for simpler graphics that need to be nice and crisp. In
contrast to JPEG, it is a lossless file format—meaning that it does not
discard any information when compressed. Because of this, file sizes for
complex images can be larger than when using a JPEG.

There are a few varieties of the PNG format: PNG-8, PNG-24, and
PNG-32. PNG-8 only supports up to 256 colors, compared to the millions
for the other two options. PNG-8 also lacks support for transparency.
Therefore, I would highly recommend using PNG-24 when saving images.

While widely supported, PNG does not work in the worst email client in
the world: Lotus Notes, specifically versions 6 and 7. For most of us,
though, we can safely use PNGs since we aren’t catering to dinosaurs.
However, if you have an audience that likes using frustratingly slow,
archaic enterprise email clients, you will need to rely on either JPEGs or…

GIF (.gif)

Ah, the GIF. Let’s all say it together: GIF, not JIF. Seriously, if you call it a
JIF, you can show yourself the door. I’m looking at you, Kevin.

�94

https://twitter.com/kevinmandeville

The Better Email on Design

GIFs are an interesting format. They are definitely not the best for
complex images, since they only support up to 256 colors. But, they excel
at displaying text. And they support transparency. And they work
everywhere.

Most importantly, GIFs are the only option that allow for animated
images. Have you ever received an email campaign showing a
devastatingly good-looking model cycling through several different
outfits? That’s the GIF in action. When you want to add some motion to an
email, the GIF is still the best way to do it (we’ll talk about motion in email
a bit later).

Apart from the color support, the main drawback to using GIFs is that
they have the tendency to produce larger file sizes.

Breaking It Down

So, if you are wondering which format to use, here are some handy little
guidelines to help you out:

• JPEG Use for any complex images that don’t require transparency
(e.g. photos, gradients, product shots).

• PNG Use for complex or simple images that require transparency.
• GIF Use for simple graphics like logos or icons, or when you need

animation in an email.

�95

The Better Email on Design

Now, let’s look at how to incorporate images into an actual email
template.

Progressively Enhancing Images

Beyond JPEG, PNG, and GIF, there are a lot of other file formats. While
most don’t have support across email clients, one format could be
beneficial to use: SVG. SVG stands for scalable vector graphics and
essentially uses code to build a graphic. SVGs are most commonly used
for things like icons, illustrations, and logos. The beauty of SVGs is that
they are scalable, meaning they won’t lose fidelity when their dimensions
are increased, and that they can be manipulated with CSS. You can even
animated them using code.

A wonderful trick for using SVGs where supported is to rely on the source
set (srcset) attribute in your img tag. The srcset attribute allows you to
define multiple images to use at either a) multiple screen widths or b)
multiple screen pixel densities. An example looks like this:

�96

The Better Email on Design

<img src="image.png" srcset=“image.png 1x, image@2x.png 2x,
image@3x.png 3x” />

In this scenario, the following images will be displayed:

• With a device pixel ratio of 1: image.png will be displayed
• With a device pixel ratio of 2: image@2x.png will be displayed
• With a device pixel ratio of 3: image@3x.png will be displayed

When srcset isn’t supported, the image will fall back to the file declared
in the src attribute (which we’ll look at in the next section). So, if we
wanted to progressively enhance our images and use SVG, we could
code up the following:

Where supported (generally SVG and srcset support go hand-in-hand),
the email client will display the SVG file. Everywhere else, it’s no big deal:
the email client will just read the src file and display it like any other
image.

Coding Images
Adding an image to an email is actually surprisingly simple. All it really
requires is the img tag. But, there are a few things that you should always
keep in mind when adding images.

�97

The Better Email on Design

First, you always need to use absolute paths for your images. You have to
host an image on a publicly accessibly server, whether it's on your own or
your ESP’s. Never use relative image paths. So, instead of doing this,
which is common on the web:

You need to do this:

That will successfully get your image into a campaign, but it might not
look its best. Depending on where you view your email, you’ll likely run
into a few problems. Let’s dive in and see how we can combat these
issues.

Problem 1: Images Aren’t Properly Sized

Unless you’re slicing up a design in Photoshop or know precisely what
size you need to save an image, chances are good that just dumping
images into an email will result in improperly sized images and broken
designs.

While we can easily constrain images within a parent element on the
web–without specifying an image’s size—we need to explicitly state the
width of an image to ensure that it displays at its intended size. Especially

�98

The Better Email on Design

in Outlook, which can’t interpret an image’s dimensions from the file.
However, this isn’t typically done in an inline style. Instead, we use the
width attribute on the img element.

This works for most email clients. Occasionally, you may run into a
problem with an image’s height being improperly interpreted. In this
case, you can either add the height attribute or rely on CSS to set the
height property to auto.

Attribute Method:

<img src="http://site.com/path/to/image.jpg" width="600"
height="200" />

Inline CSS Method:

<img src="http://site.com/path/to/image.jpg" width="600"
style="height: auto;" />

Internal CSS Method:

<style type=“text/css”>
 img { height: auto !important; }
</style>

Outlook tends to be particularly bad at sizing Retina images (which we’ll
discuss in a page or two). If you’re running into trouble, just explicitly

�99

The Better Email on Design

declare the width and height attributes on your img tag and you should
be fine.

At the very minimum, you should always declare a width for your images.
So, moving forward, we will incorporate that into our boilerplate img tag.

Problem 2: Borders Around Images

In most cases, you’ll likely want to link an image out to a landing page.
People love looking at images and their used to them being linked since
most are on the web. So, it almost always makes sense to wrap your img
tag in an a tag.

�100

The Better Email on Design

When you wrap your images with a link, though, some email clients will
automatically add a blue border around the image to denote that it is a
link. While this is great from a usability standpoint, it sucks from a
designer’s perspective.

To prevent blue borders, we add the border attribute to our boilerplate
image tag and make the value zero.

<img src="http://site.com/path/to/image.jpg" width="600"
border="0" />

Now, even when images are linked, we can sleep easy knowing that they
won’t have any nasty blue borders around them ruining our design.

Problem 3: Gaps Around Images

Some designs call for images to be placed next to or on top of each
other, without any space between the two images.

While this is easy enough to pull off, you may notice some email clients
displaying a gap between or below the images, making the email look
broken. This is due to how some rendering engines (justifiably) handle
images in regards to the baseline of text elements in the document.

The easiest fix for ensuring your images appear without gaps is to add
the following to your img tag:

�101

The Better Email on Design

<img src="http://site.com/path/to/image.jpg" width="600"
border="0" style="display: block;" />

That display: block; rule takes the baseline out of the equation and
keeps everything tidy. Just keep an eye on where you’re applying it, as
not every image needs to be made into a block-level element. If you have
something like an icon next to a line of text, making that icon a block-
level element will force it down on its own line.

Problem 4: Image Blocking

This is the big one when it comes to using images in email. As mentioned
earlier in the book, a lot of email clients (and some users, too) will disable
the loading of images in an email until you specifically tell them to
download and display images. Ever see this? (Sorry, Samsung!)

�102

The Better Email on Design

That’s image blocking in action. Gmail used to be one of the main
culprits, but enabled images by default a few years back. Litmus actually
did a great study when this happened and found out that nearly 43% of
all Gmail users had images disabled. While that doesn’t necessarily
apply to every other email client, we can certainly make some
assumptions…

Image blocking is a huge problem for email campaigns. If your message
is even partially tied up in an image, subscribers won’t see it. That’s why I
advocate using as much HTML text as is humanly possible. But, nearly
everyone will need to have images in an email at some point. So, how do
we mitigate the effects of image blocking?

Simple: we use the alt attribute to provide some contextual information
about our images.

<img src="http://site.com/path/to/image.jpg" alt="Some
Descriptive Text" width="600" border="0" style="display: block;"
/>

Now, when our images are blocked, most email clients will display the
alternative (ALT) text, providing subscribers with at least some
information about what the hell’s going on.

The cool thing about ALT text is that we can actually get fairly creative
with it. Using inline styles on the img tag, we can style our ALT text so that
it fits into our design aesthetic. We can make use of font styling and

�103

https://litmus.com/blog/gmail-data-analysis-reveals-image-blocking-affects-43-of-emails
https://litmus.com/blog/gmail-data-analysis-reveals-image-blocking-affects-43-of-emails

The Better Email on Design

background colors to make a design that holds up beautifully even in the
absence of images.

<img src="http://site.com/path/to/image.jpg" alt="Some
Descriptive Text" width="600" border="0" style="display: block;
color: #888888; font-family: sans-serif; font-size: 24px;" />

ALT text should be baked into your image tags, at least for most images
in an email. In some cases, it doesn’t make sense to use ALT text, like with
logos or icons. These images tend to be smaller in size, so trying to cram
a bunch of ALT text in that space doesn’t make a whole lot of sense.
Likewise, those elements usually don’t have a textual equivalent, so you
don’t really need to describe their content to users with images disabled
or anyone using a screen reader.

That being said, nearly every image also provides the opportunity to get
cheeky and have some fun with ALT text. Some senders use ALT text as a
place to include inside jokes, weird musings, and even emoticons. While
not everyone sees them, having little easter eggs like that in an email is a
killer way to build a relationship with subscribers and just make
someone’s day.

Making Images Responsive by Default

One thing I've gotten into the habit of doing for all of my images is
making them responsive by default. This is something I was turned onto
by Julie Ng in her awesome—but now defunct—newsletter.

�104

https://julie.io/learn-email-html/issues/4-images-back-to-basics/

The Better Email on Design

This technique allows for images to resize based on the device screen
size. When viewed on larger screens, the images display as normal. When
viewed on smaller screens, they fluidly scaled down to fit within their
container—without having to do anything special in our code (like
applying classes, overriding sizes in CSS, etc.).

By taking advantage of how CSS sizing works, we can build up a cascade
of sizes that allow the images to flow. The code looks like this:

<img src="http://site.com/path/to/image.jpg" alt="Some
Descriptive Text" width="600" border="0" style="display: block;
color: #888888; font-family: sans-serif; font-size: 24px; width:
100%; max-width: 100%;" />

View on CodePen

We still have the 600px wide attribute on the img, but we've also added
the width and max-width CSS properties inline, too. With those in place,
and set to 100%, the image will reflow based on a few rules:

• When on a large screen, the image will be the full 600 pixels wide.
• When on a screen narrower than 600 pixels, the image will be 100%

of the container wide.
• Although 100% wide on narrower screens, the image will never be

more than 100% wide, which will prevent scrolling and make it
resize based on the screen width.

�105

https://codepen.io/rodriguezcommaj/pen/78d936fe442a7664c5a3ab39746c531e?editors=1000

The Better Email on Design

Nearly all of my images have these properties applied by default, saving
me the trouble of having to worry about them on different screen sizes.
Not all images need to be responsive by default, though. For things like
logos and icons, it makes sense to have them maintain their dimensions
across screen sizes. They are usually small and can be hard to visually
parse when too small, so keeping them the same size makes sense.

Using Background Images

Another useful technique in email is the use of background images.
Background images are applied to HTML elements and allows you to
stack other bits of HTML on top of an image. This can be beneficial
because it lets you use live HTML text on top of an image, which aids in
accessibility and for when email clients disable images by default. You
can also do some cool tricks with swapping background images out
based on device size.

There are three main ways to include background images in an email: the
background HTML attribute, the background CSS property, and via
VML.

The background HTML attribute can be applied to a table element and
takes a URL as its value.

<table background=“http://site.com/img/background.jpg”>

�106

The Better Email on Design

This method works in some email clients but isn’t very flexible or reliable,
so I wouldn’t recommend it. You may see it in legacy email templates,
though, so it’s worth knowing about.

My preferred method is to use the CSS background property on an
element, usually a div or a table cell.

<td style=“background: #000000 url(‘http://site.com/img/
background.jpg’);”>

The background property is shorthand and allows for a few values. In the
example above, I set a fallback color of black for when the background
image doesn’t load. This is absolutely vital to ensure that any text within
that element is still visible even if the image isn’t loaded. In the example
above, there could be white text on top of that background image. If no
fallback color was declared, then that white text would be unreadable on
the default white background.

Another useful property to include on your element is background-
size. The background-size property dictates how the image is scaled
to fit the element in which it is contained. It takes a few values like cover,
contain, or individual values. I’d wager that the most common value
used is cover, which makes the background image cover the dimensions
of the containing element.

The last method for including background images is by using VML
coupled with HTML. This method is commonly referred to as the

�107

The Better Email on Design

bulletproof background approach and was popularized by Stig Morten
Myre, the same guy that created the bulletproof buttons approach
mentioned in the last chapter. The code looks something like this:

<div style="background-color:#7bceeb;">
 <!--[if gte mso 9]>
 <v:background xmlns:v="urn:schemas-microsoft-com:vml"
fill="t">
 <v:fill type="tile" src="https://i.imgur.com/YJOX1PC.png"
color="#7bceeb"/>
 </v:background>
 <![endif]-->
 <table height="100%" width="100%" cellpadding="0"
cellspacing="0" border="0">
 <tr>
 <td valign="top" align="left" background="https://
i.imgur.com/YJOX1PC.png">
 </td>
 </tr>
 </table>
</div>

It’s not as complex as the bulletproof buttons code, but it’s still adding to
your code and maintenance costs. The benefits of this approach is that
it’s more widely supported. Writing that code can be annoying though.
Thankfully, Stig and Campaign Monitor have a handy tool to generate it
for us at Buttons.cm.

Regardless of which approach you decide to use, I would just remind you
to always set a fallback color for your container and background image
so that your text and message is always readable.

�108

http://buttons.cm

The Better Email on Design

Retina Images

With the introduction of the iPhone 4, Apple popularized the Retina
display. Retina displays pack a huge number of pixels into a screen, far
more than traditional computer displays. This increased pixel density
makes the screen exceedingly sharp and clear, so much so that the
human eye can no longer distinguish individual pixels.

One of the side effects of a Retina display is that images which are not
optimized for them appear to be fuzzy or blurred. This can get frustrating,
especially for notoriously picky designers. The way to get around this is to
use higher resolution images and scale them down to the appropriate
size using code.

As an example, let’s say we have a photograph that needs to be 600x400
pixels. Normally, we would export that image from our graphics editor at
that size. To make it appear crisp on Retina displays, we would instead
save it out at least twice the intended size. In this case, we would export it
at 1200x800 pixels.

Then, in our code, we would just use the 600x400 sizing:

<img src="http://site.com/path/to/retina-image.jpg" alt="So
Crisp" width="600" height="400" border="0" style="display:
block;" />

Now, that picture looks absolutely beautiful on Retina displays.

�109

The Better Email on Design

The major drawback of using Retina images in an email is that the
increased image dimensions equate to an increased file size, too. For
mobile users with limited data plans, this can be a very real concern.
There are typically two methods that can help out if you’re concerned
about image file sizes (which you should be).

Optimizing Images
One way to keep file size down, not only for Retina images, is to optimize
and compress your images using software. While most designers play
with the quality setting in Photoshop, applications built specifically for
compressing images are typically more effective than whatever
Photoshop can do.

It’s good practice to run your images through an optimization tool before
uploading them to your server. There are a variety of tools available, my
favorites being ImageOptim and JPEGmini. If you’re using Retina
images, running them through one of these is a great way to keep your
mobile subscribers happy.

Using Compressive Images

Another solution for reducing the file size of a Retina image is to use what
are referred to as compressive images. Compressive images aren’t a new

�110

https://imageoptim.com/
http://www.jpegmini.com/

The Better Email on Design

file format, but a way to export a JPEG to keep the file size small while still
retaining good quality when scaled down.

Essentially, you would have an image that is at least four times its
intended size. This enormous image is then saved with an extremely low
quality setting in Photoshop. Even though the large image looks terrible
when viewed at full size, when it is scaled down in the code, it retains its
detail—all without the added file weight.

�111

 

Chapter 6

Understanding Mobile

The Better Email on Design

Chapter 6

Understanding Mobile

Take a look at your jeans. Notice anything? That faded rectangle
permanently branded into your favorite pair of Levi's? Take note: that's
the most important development in email marketing any of us are likely
to see. Hell, it’s likely the most significant technological innovation most
of us will ever see, apart from the invention of the World Wide Web.

Mobile opens account for half of all opens. Source

Somewhere in the mid-2000s, mobile got big. Like, really big.

�113

https://litmus.com/blog/email-client-market-share-trends-1h-2017

The Better Email on Design

Overnight, it seemed as if nearly everyone had a smart phone. And, with
the introduction of the iPhone in 2007, an increasing number of those
smart phones used touch as their main interaction paradigm.
For email designers, the shift to mobile has three main implications:

1. More people are checking their email on mobile devices, whatever
“mobile device” means. The context in which they are viewing
emails is always in flux. It's no longer the case that they are sitting at
a desk when checking email.

2. Every year, those devices evolve. Screen dimensions and device
sizes are fragmenting at an alarming rate. And new email apps are
constantly entering the market, each with their own rendering
quirks.

3. The idea of a “click” no longer applies. Most of these mobile
devices rely on touch. The way we talk about interactions in email
needs to change, along with the way we approach designing our
emails to account for touch interactions.

Regardless of your industry, it is no longer acceptable to ignore mobile
email users. Even if an industry has a low percentage of mobile users,
they still exist. For example, at Litmus, our mobile open rates are
traditionally very low (around 10-15%). Most of our opens are on desktop.
I imagine that’s the case for most B2B companies. Still, our subscribers
expect our emails to work on their mobile devices, and so will yours.

So, if mobile is so important, how the hell do we actually handle these
challenges?

�114

The Better Email on Design

Scalable, Fluid, Whatever...
Email designers typically take one of four approaches when dealing with
mobile:

1. Do nothing.
2. Make their emails mobile-aware.
3. Make their emails fluid.
4. Make their emails responsive.

I bet you can guess how well that first option works, huh? While a few
industries will likely stagger on for some time without rethinking their “do
nothing” approach, it's bound to catch up to them sometime. And when it
does, they'll be bleeding subscribers–not to mention profits.

So, let's take a look at the other three options.

Mobile-Aware

When an email designer builds a mobile-aware (or scalable, as it's
sometimes called) email, they're basically saying, "I'm not going to do
anything special in my code, but I'll still make this email usable in a
mobile context."

�115

The Better Email on Design

Mobile-aware emails use a single, fixed layout for every environment.
However, unlike the “do nothing” approach, mobile-aware has mobile
users in mind from the outset. Mobile-aware emails typically use large
text, large buttons, simplified layouts, and shorter copy to ensure that the
design is both readable and usable on desktop and smaller devices.

Even though it looks like the designer is being lazy, it's actually a great
approach. Without having to change their coding methods, they can still
improve the experience for mobile users by doing nothing more than
making sure copy is easy to read and buttons are easy to interact with
when an email client scales the campaign to fit a screen.

However, this approach doesn't offer much in the way of flexibility. It'd be
nice to further tailor our campaigns, so let's kick things up a notch.

Fluid

Fluid emails are very similar to mobile-aware in the sense that they use
the same layout for every environment. However, they make that layout
more flexible by using tables that allow the content to flow to fill nearly
any screen size.

A fluid email uses width="100%" on tables to make them flow across
screen sizes. This works a treat on mobile devices, but on desktop clients,
it can sometimes get unwieldy. Without any constraints, emails can
become grossly wide, making blocks of text difficult to read. And, when

�116

The Better Email on Design

images are included, they can often look awkward and even lose their
context when they slide away from related text.

There are a few things we can do to remedy this situation, but that's
diving into…

Responsive

Responsive emails build on the previous two approaches by adding an
extra element of control that makes designing for mobile a hell of a lot
better.

Like mobile-aware, responsive emails account for mobile users by
making text, buttons, and images easy to read and interact with on any
device. And, like fluid emails, responsive emails use fluid tables and
images to keep things flowing no matter the screen size.

However, responsive emails aren't constrained to a single layout. Using
CSS media queries, responsive emails can fine-tune nearly any element in
a design to make it better suited to mobile use. Element sizes can be
adjusted, layouts can be changed, and, in some cases, components can
even be selectively shown or hidden for mobile subscribers.

It's the most powerful approach available to email designers, and the one
we'll spend the next chapter looking at in detail.

�117

The Better Email on Design

There are a few additional approaches to handling mobile emails, which
will be discussed later on in the book. While they are extremely
interesting and can be very useful, they tend to be a bit more
complicated. The responsive approach discussed in the next chapter is a
good foundation on which to understand all other approaches, so that’s
what we’ll be spending the most time on.

�118

 

Chapter 7

Responsive Email Design

The Better Email on Design

Chapter 7

Responsive Email Design

Hopefully you’ve heard of responsive web design. Fluid, flexible, liquid–
whatever you want to call them–layouts have been around since the early
2000s. But, it wasn’t until Ethan Marcotte published his groundbreaking
article on A List Apart in 2010 that responsive web design as we know it
today was born. Over the course of the article, and 2011’s book of the
same name, Mr. Marcotte codified the three tenets of responsive web
design:

1. Fluid Layouts
2. Fluid Images
3. Media Queries

Despite all of the differences between the web and email, most
responsive email design works using the exact same principles. While
there are different techniques (which will be discussed in the next
chapter), edge cases, and the occasional hack, we’re still relying on fluid
layouts and images, manipulated via media queries, to optimize emails
where we can.

This chapter is all about implementing those three techniques in email.
By understanding these three techniques, we'll be building some

�120

https://alistapart.com/article/responsive-web-design
https://alistapart.com/article/responsive-web-design
https://abookapart.com/products/responsive-web-design
https://abookapart.com/products/responsive-web-design

The Better Email on Design

foundational skills that make understanding the more complicated
techniques found in the next chapter easier.

Media Queries

Since enabling fluid layouts and images hinge on using media queries,
that’s what we will look at first.

Media queries are part of the CSS3 recommendation and are,
essentially, a logical operator for toggling styles based on some criteria
which you specify. Sound complicated? They’re not. Here’s what one
looks like:

@media screen and (max-width: 600px) {}

Media queries will always live in a style block in the head of our emails.

Let’s break that down.

We always start the media query by using the @media, or at-rule,
followed by a media type, in this case screen. The media type can
accept one of four values: all, print, screen, and speech. Since we’re
dealing with designing for devices with a screen, we’ll almost always use
the screen media type. If you think your subscribers are likely to print
your email, you can use styles declared in the print media query to
adapt your email layout for friendly printing.

�121

https://www.w3.org/TR/css3-mediaqueries/

The Better Email on Design

Next, we can declare any number of media features. Media features allow
us to test for certain conditions. In the example above, we are checking to
see if the width of the document window is 600 pixels or below. If it is,
then the media query is evaluated to be true. When true, any CSS written
inside the curly braces of the media query will be applied to our
document.

Once understood, media queries become extraordinarily powerful. They
allow us to move beyond the desktop and target mobile clients, feeding
those clients styles that improve our campaigns on various screen sizes.
You can even use media queries to target specific email clients and
browsers, which can be helpful when progressively enhancing your email
campaigns with more advanced techniques that don't work everywhere.

�122

The Better Email on Design

When it comes to targeting different devices, there are a number of
media features which are useful. While there are a dozen or so universally
supported media features (and a hell of a lot more browser-specific
media features), most email designers rely on the width and device-
width media features for targeting devices of certain sizes. Both can be
prefixed with either min- or max-, which allow you to target ranges of
screen sizes.

Using min- and max- depends on your approach to email design.

There are two concepts at work: building mobile-first or building
desktop-first. Using min- assumes that you are building mobile-first i.e.
your inline styles are meant for mobile devices and anything within the
media query is used to enhance the design in desktop environments.
Using max- implies the opposite. Due to the limited support of media
queries in email clients, especially desktop clients, it’s typically safer to
rely on max- and build desktop-first. Then, within our media queries, we
can use styles to enhance our campaigns for mobile users.

To keep things simple when starting out, media queries in this book will
take the following form:

@media screen and (max-width: 600px) {
 ...STYLES HERE...
}

�123

The Better Email on Design

We use max-width with a fairly generic value of 600 pixels. Any devices
with a screen narrower than 600 pixels will then see and render our
defined styles. This basic media query is all we need to get started with
implementing the next two components of responsive emails: fluid
layouts and fluid images.

Fluid Layouts
If you recall from Chapter 1, we used nested tables in a very specific
manner when building our email structure. We had a fluid outer table
followed by a fixed-width table to constrain our email content’s
dimensions, inside of which we again used a fluid table to house any
actual content.

�124

The Better Email on Design

The outermost and innermost tables are already fluid, leaving us one,
fixed-width table to worry about. On mobile, we want to be able to target
any fixed-width tables and force them to be fluid. To accomplish this, we
rely on the class HTML attribute to provide a hook with which to target
that table. We give the table a class name for referencing later:

<table border="0" cellpadding="0" cellspacing="0" width="100%">
 <tr>
 <td>
 <table border="0" cellpadding="0" cellspacing="0"
width="600" class="fluid-table">
 <tr>
 <td>
 <table border="0" cellpadding="0" cellspacing="0"
width="100%">
 <tr>
 <td>
 ...CONTENT...
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </td>
 </tr>
</table>

Here, we are calling that table fluid-table since, well, we want that
table to be fluid. You can name your classes whatever you want. I prefer
using class names that are descriptive of their purpose, so that it’s easy to
revisit a template and immediately know what is going on in the code. I

�125

The Better Email on Design

also prefer to hyphenate my class names. Some people use underscores
or camelCasing, but since we’re dealing with CSS, in which properties are
hyphenated (e.g. font-style and background-color), I like to keep
things consistent. I’m admittedly not the best at always following this
convention, but I’m trying to get better.

Now that we have that class applied to our fixed-width table, we can
select that class in our media queries and force it to be a fluid, 100% wide
table on anything below 600 pixels wide.

@media screen and (max-width: 600px) {
 .fluid-table { width: 100% !important; }
}

Since we’re overriding an inline attribute, we use the !important
declaration to force the width. Now, our table flows nicely between
screen sizes, getting us one step closer to responsive emails.

Fluid Images

Fortunately for us, we're already using responsive images by default.
Back in the chapter on images, we applied the width attribute to our img
tag, along with both the width and max-width CSS properties to create
fluid images.

However, if we wanted to further target our images, we can use the exact
same technique that we just applied to our tables. Simply apply a class to

�126

The Better Email on Design

the image, then target that image in your media query to override any
inline styling.

There is something to be said for art direction and responsive images.
This approach doesn’t take into account the content of an image.
However, scaling an image down sometimes leads to problems with the
information not being easily readable in the smaller image.

Think about an image with text—when scaled down too far, the text
becomes unreadable. In these cases, it can be useful to swap out images
instead. The typical approach is to have two images in the email and
selectively hide and show those images based on screen size.
Alternatively, you could use the srcset attribute to declare multiple
images and image sizes in a single img tag.

<img src="small.jpg" srcset="medium.jpg 1000w, large.jpg 2000w"
alt="">

In the example above, taken from CSS-Tricks, you can see both the src
and srcset, or source set, attributes defining multiple images. Source
set also needs width dimensions applied with those images to know
which breakpoints to use for which images. This is a very handy way to
handle responsive images, but doesn't work in most email clients.

�127

The Better Email on Design

Adjusting Other Elements

While using media queries to make our tables and images fluid
technically gets us to responsive emails (in most clients), there are a lot of
times where selectively adjusting properties of an element can be
beneficial on mobile. In these cases, we use the same approach as
before: target an element with a class and override any properties using
CSS.

There are a number of ways to improve the mobile experience. In the
following sections, we’ll look at three of the most common and helpful.

Increasing Text Size

Trying to read small text on a mobile device sucks. It strains the eyes and
frustrates users, leading them to close, delete, and even unsubscribe
from your campaigns. If you are smart, you are using a large baseline
font-size for any text in your email. Somewhere around 14-18 pixels is a
good place to start. Even on email clients that don’t understand media
queries and just scale an email down, this text is still readable. But, it’s
sometimes a good idea to bump things up even more.

Let’s say we have some copy in a paragraph.

�128

The Better Email on Design

<p style=“margin: 0 0 20px 0”>This is some copy in a
paragraph.</p>

Using our same approach, we can target that paragrah with a class name,
in this case, mobile-copy.

<p class=“mobile-copy” style=“font-size: 16px; line-height:
18px; margin: 0 0 20px 0”>This is some copy in a paragraph.</p>

Then, in our media query, we adjust both the font-size and line-
height to our liking.

@media screen and (max-width: 600px) {
 .mobile-copy {
 font-size: 20px !important;
 line-height: 32px !important;
 }
}

Now, our text is comfortable to read on both desktop and mobile
screens. The same can be applied to headings, buttons, disclaimers—
pretty much anything. It’s a good idea to keep your class names specific
enough to tell you what they are doing, but general enough to be
applied to multiple elements in a design. I like using classes like mobile-
copy, mobile-heading, or mobile-button-text, but to each their
own. If you want to keep your code really clean, and are using semantic
elements, you can target the elements themselves. Just replace the class
names in your media query with whatever element you are targeting, like
h1, h2, p, and so on.

�129

The Better Email on Design

Increasing White Space

Similar to text size, white space often needs adjusting on mobile devices.
The same table cell padding on desktop rarely works perfectly on smaller
screens. Once again, targeting and overriding works like a charm.

Since we use padding on table cells, we can target those with
appropriate class names:

<td align=“center” class=“mobile-pad” style=“padding: 20px 10px
20px 10px”>

Then, we adjust that padding to taste:

@media screen and (max-width: 600px) {
 .mobile-pad {
 padding: 40px 20px 40px 20px !important;
 }
}

Using this approach allows you to fine-tune your design and make it not
only more functional, but more beautiful on mobile devices, too.

Hiding Content

Sometimes, you need to hide something on a smaller screen. Without
getting into too much of a philosophical debate on whether or not you

�130

The Better Email on Design

should hide something, let’s get to the practicalities of how to actually do
the hiding.

A good example of this might be visible preheader text at the top of an
email. It’s not vital information and can take up valuable screen space
(even though the fold in email does not exist) on mobile devices. So, for
email clients that support media queries, we can hide it. Since we
encapsulate all of our content in its own table cell, we can use a generic
class name of hide which is then applied to any table cell that needs to
be hidden.

Then, in our CSS, we use the display property to accomplish the hiding:

@media screen and (max-width: 600px) {
 .hide {
 display:none !important;
 }
}

While this works beautifully in a lot of email clients, some of them will still
display that content. You definitely run the risk of having subscribers
seeing something out of context, which is why I recommend only hiding
content that is secondary in nature. This same method can work for the
‘art directed images’ problem described above, but that is even more
volatile, since you run the risk of having doubled up images for some
subscribers. Just test things out, hack around if needed, and see what
works for you audience and campaigns.

�131

The Better Email on Design

Responsive Support

You may have noticed that I make a few caveats when talking about
responsive email design. Using media queries and CSS targeting works
in a lot of cases, but will absolutely fail in some email clients. So, where
does support currently stand?

At the time of writing, support for the techniques described above in
major clients looks like the below (the key being media query support):

Email Client @media Support

Android/Samsung ✔

iOS Apple Mail ✔

Windows Phone 8.1 ✔

Gmail App ✔

Gmail ✔

AOL Mail ✔

Yahoo! Mail ✔

Outlook.com/Office 365 ✗

Outlook 2007-2016 ✗

Outlook iOS/Mac ✔

Apple Mail ✔

�132

The Better Email on Design

As you can see, there are a few omissions. Still, these techniques are
pretty widely supported, especially when you consider worldwide email
client market share. What techniques you use should absolutely be
determined by where your audience opens your emails. If you notice that
a lot of your subscribers open on iOS Mail.app, then you can safely use
the responsive techniques above (along with plenty of fancy CSS, too). If
you're not sure where your subscribers are opening, using something like
Litmus Email Analytics is a must.

But, what can we do for email clients that don't support this traditional
responsive approach? We’ll see in the next chapter.  

�133

https://litmus.com/email-analytics

 

Chapter 8

Different Layout
Approaches

The Better Email on Design

Chapter 8

Different Layout Approaches

While the traditional responsive approach we saw in the last chapter
works well across most email clients, and is easy to learn—especially if
you’re coming from a web background—it might not always be the right
choice of technique for building your campaigns. Over the years, a
number of different techniques have been developed to address various
issues with email clients.

Although I’m going to go over four different layout approaches in this
chapter, I’ll only look at the first two in-depth. The other two approaches
are interesting but, in my opinion, aren’t worth the effort to use in most
cases. That could change in the future as email clients evolve but, for
now, we’ll just learn the basics of those approaches.

Now, onto the first two: hybrid coding and the table of your dreams…

The Hybrid Coding Approach

The hybrid coding approach is an alternate way to set up the structure of
your campaigns that works well even in the absence of media query
support. It was largely pioneered by Fabio Carneiro and Nicole Merlin,
and popularized by Mike Ragan, three email developers that deserve a

�135

https://twitter.com/flcarneiro
https://twitter.com/moonstrips
https://twitter.com/Mike_Ragan

The Better Email on Design

beer or cup of coffee if you ever run into them. It’s sometimes referred to
as the “spongy” approach or the “ghost tables” technique. Whatever you
call it, here’s how it works.

All Fluid Layout

The crux of the hybrid coding approach is that it uses entirely fluid tables
when building the initial structure. It gets rid of the fixed-width container
table that we’re used to in the traditional responsive approach. Since
everything is fluid by default, we don’t need to change width values using
media queries, and things just naturally work in clients that don’t support
media queries. However, this leads to the problem of constraining the
width, since we don’t want insanely wide emails on large screens.

An example of that table structure can be found below.

<table border="0" cellpadding="0" cellspacing="0" width="100%"
role="presentation">
 <tr>
 <td>
 <table border="0" cellpadding="0" cellspacing="0"
width="100%" role="presentation">
 </table>
 </td>
 </tr>
</Table>

Since that container table has width=“100%” applied, it will flow to fill
the available space in the email client viewport. Let’s see if we can fix that.

�136

The Better Email on Design

Constraining Widths

To constrain a table width, the hybrid coding approach uses the max-
width CSS property, which allows you to constrain an element to a
specified width while keeping it fluid below that width. This property is
applied as an inline style on the table. For our purposes, we’ll constrain
the table to a maximum width of 600 pixels.

<table border="0" cellpadding="0" cellspacing="0" width="100%"
role="presentation">
 <tr>
 <td>
 <table border="0" cellpadding="0" cellspacing="0"
width="100%" role="presentation" style=“max-width: 600px;”>
 </table>
 </td>
 </tr>
</table>

Now, in most clients, that table will be properly displayed at 600 pixels.
On screens that fall below 600 pixels wide, then it will take up one
hundred percent of the viewport and flow to fill the screen. All without
media queries.

Dealing With Outlook

I wish this was all that was needed to get emails working everywhere, but
we still have one major problem: Microsoft Outlook. None of the desktop

�137

The Better Email on Design

Outlook clients (except Outlook for Mac, which is essentially a wrapper
for WebKit and supports most HTML/CSS) support the max-width
property, which leaves us in a pickle.

Fortunately, we can easily target Outlook clients and provide code which
is supported.

Microsoft Conditional Comments

Starting with Outlook 2007, Microsoft updated their email clients to use
the Microsoft Word rendering engine for displaying content. While this
has benefits for Microsoft Office users and people in the Windows world,
it was a disaster for email marketers. Outlook previously used Internet
Explorer (which was built to render HTML and CSS) to render emails but,
with Word, there was a massive drop in support for HTML and CSS. Word
was never built to properly display HTML and CSS, and we’ve been left
picking up the pieces ever since.

Although the change to Word created a lot of problems, there was one
major trick that helped ease the pain for email developers. Microsoft
Office supports targeting through code by using conditional comments.
Using HTML comments, we can add a bit of text to tell Word to read the
content inside of those comments and use it in our emails.

Here’s what that looks like:

<!--[if gte mso 12]>

�138

The Better Email on Design

 Only Outlook 2007+ will understand and display this content.
<![endif]-->

We use the same format as any HTML comments, but within that we add
square brackets surrounding some conditions. We use the if and endif
logic to make Outlook evaluate the statement that follows. The gte part
stands for “greater than or equal to”, mso means “Microsoft Office”, and
the 12 is equal to the Outlook 2007 version of the email client. There are
a number of values you can test against to target specific versions of
Outlook if needed.

• lt - less than
• lte - less than or equal to
• gt - greater than
• gte - greater than or equal to
• Outlook 2000 - Version 9
• Outlook 2002 - Version 10
• Outlook 2003 - Version 11
• Outlook 2007 - Version 12
• Outlook 2010 - Version 14
• Outlook 2013 - Version 15
• Outlook 2016 - Version 16

Knowing all of this, we can now put it to work to help us constrain the
widths of our fluid tables in Outlook, giving us the last piece of the puzzle
for hybrid emails.

�139

The Better Email on Design

Within our fluid tables, we can provide additional, fixed-width tables that
only Outlook will see. These are commonly called “ghost tables” since no
other email clients will see them. The width of both the table and table
cell will be the same as that used in the max-width attribute on the fluid
tables.

<table border="0" cellpadding="0" cellspacing="0" width="100%"
role="presentation">
 <tr>
 <td align="center">
 <!--[if (gte mso 9)|(IE)]>
 <table align="center" border="0" cellspacing="0"
cellpadding="0" width="600">
 <tr>
 <td align="center" valign="top" width="600">
 <![endif]-->
 <table border="0" cellpadding="0" cellspacing="0"
width="100%" role="presentation" style="max-width: 600px;">
 <!-- FEATURED ARTICLE -->
 <tr>
 <td style="padding: 20x 10px 20px 10px;">
 <table border="0" cellpadding="0"
cellspacing="0" width="100%" role="presentation">
 <tr>
 <td>
 <h1>Headline</h1>
 </td>
 </tr>
 <tr>
 <td>
 <img alt="hero image" src="http://
placehold.it/1200x600" width="600" border="0" style="display:
block; max-width: 100%; min-width: 100px; width: 100%;">
 </td>

�140

The Better Email on Design

 </tr>
 <tr>
 <td>
 <p>Lorem, ipsum dolor sit amet consectetur
adipisicing elit. Laudantium dicta ducimus quibusdam, enim
fugiat magnam impedit nulla distinctio excepturi. Molestiae modi
quas aut totam similique suscipit autem deleniti eaque
necessitatibus.</p>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <!-- /FEATURED ARTICLE -->
 </table>
 <!--[if (gte mso 9)|(IE)]>
 </td>
 </tr>
 </table>
 <![endif]-->
 </td>
 </tr>
 </table>

View on CodePen

Now, when are emails are viewed in Outlook, they are properly
constrained and display perfectly (at least as perfectly as an email can
look in a Microsoft client).

�141

https://codepen.io/rodriguezcommaj/pen/11c0e8bc102890774d12cf56a4a742c2?editors=1000

The Better Email on Design

Multiple Columns in Hybrid

Again, the hybrid coding approach is a fantastic way to create responsive
emails even when media queries are not supported. However, things can
get a bit more complicated when you start introducing multiple columns
to your layout.

Since we can’t rely on media queries to change the declared width of the
columns like in the traditional responsive approach, we have to used
fixed widths to keep those columns a particular size and then rely on the
fact that those columns will naturally stack on smaller screens.

In code, that seems like it would be easy, but we do run into issues of
centering and alignment of the columns. There are a few tricks to getting
columns centering properly on mobile, mainly by wrapping column

�142

The Better Email on Design

tables in a div set to display: inline-block; with the max-width
and width set to the same values as the table within. I’m not too keen to
get into that long of a code sample here, but you can check out a two-
and three-column example of a hybrid email here and here, respectively.

The major downside with multiple columns in the hybrid approach is that,
since those columns are declared as fixed-width elements, they don’t
grow to fill the screen on mobile devices. You can adapt those columns to
become fluid using media queries but, again, it’s not supported
everywhere.

Although it’s not as clean as the traditional responsive approach, it does
work everywhere and you get used to the structure and mechanics of
hybrid code the more you use it.

The Table of Your Dreams

My second favorite coding approach for emails was first written about by
Mark Robbins, another email developer that deserves a drink. In this
blog post, he describes a way to make a simple, responsive email using a
single table with three columns. The table is set up so that the center
column has a specified width attribute, with the other two having none.

<table width="100%" border="0" cellspacing="0" cellpadding="0"
role="presentation" style="table-layout: fixed;”>
 <tr>
 <td style="font-size:0px"> </td>
 <td align="center" width="600" bgcolor="white">

�143

https://codepen.io/rodriguezcommaj/pen/9d0a5ba638ad884a02ec81561c3415b7?editors=1000
https://codepen.io/rodriguezcommaj/pen/5f58b3df282ae68a74364ba8d8aaacce
http://https//twitter.com/M_J_Robbins
http://blog.gorebel.com/email-table-structure/
http://blog.gorebel.com/email-table-structure/

The Better Email on Design

 <h1>
 New Table Structure
 </h1>
 </td>
 <td style="font-size:0px"> </td>
 </tr>
</table>

View on CodePen

You can see that both of the outer columns have a non-breaking space
() within, which ensures that those cells won’t collapse. This
effectively forces email clients to behave like web browsers when you
apply the margin: 0 auto; rule to an element, centering that element
on the page. Since we’re only using the width attribute set to 600 pixels
on that center table, when the screen is smaller that 600 pixels, the
content will become fluid to fill those dimensions.

Mark notes that, using this approach, you can still add content in those
outer tables to create some interesting designs. Even simple things like
adding a bgcolor to those cells allow for great design options. And, by
stacking this table structure and adding multiple outer columns, you can
offset the center content, which adds to the creative possibilities.

What I love about this approach is the simplicity of the code. It doesn’t
use media queries, it uses only a single width attribute, and—if your
layout is relatively simple at least—it doesn’t rely on complex nesting or
Microsoft ghost tables. If your email is a simple, single-column affair
(which I recommend striving for), this is the approach I would

�144

https://codepen.io/rodriguezcommaj/pen/752d23afe319870d2a6de03280d20907?editors=1000

The Better Email on Design

recommend. You can always progressively enhance it, too, by adding in
media queries to adjust styles where supported.

More Complicated Stuff

Again, there are other layout options that have been developed over the
past few years. While I won’t take much time going over them here, I will
describe them briefly and point you to some resources if you want to dig
deeper. I want to reiterate that these are all absolutely fascinating
techniques and deserve consideration. That said, I think the techniques
already described in this book are better options for most people and
have the benefit of being easier to implement and update over time.

The Fab Four Technique

The Fab Four technique was developed by Remí Parmentier, the great
detective of the email world. Like the hybrid coding approach, it was
developed to address the lack of media query support in some email
clients. The Fab Four mentioned in the technique are:

• The CSS calc() function
• The CSS width property
• The CSS min-width property
• The CSS max-width property

�145

http://https//twitter.com/HTeuMeuLeu

The Better Email on Design

Using these four elements, you can set up a cascading set of rules that
determine the width of elements. This allows us to address one of the
problems with the hybrid approach, where columns were of a fixed size
and often looked awkward on smaller screens.

The width cascade works when the three CSS width properties are used
together. You just have to remember these rules:

• If the width is greater than max-width, max-width wins and is
applied

• If the min-width is greater than either max-width or width, min-
width wins and is applied

Combined with the calc() function, which allows us to use some CSS
arithmetic to determine the value of the width property, the Fab Four
technique allows for some really cool responsive emails. The main
problem with this approach is that the calc() function isn’t supported in
some major clients, specifically Lotus Notes (but who cares?), some
versions of Outlook, the Outlook web app, and all versions of Yahoo!
Mail.

There are some workarounds, but I’ll let Remí explain those in his
excellent writeup of the technique.

�146

http://https//medium.freecodecamp.org/the-fab-four-technique-to-create-responsive-emails-without-media-queries-baf11fdfa848

The Better Email on Design

Mobile-First

The next method is Stig Morten Myre’s mobile-first approach. Like the
Fab Four approach, it also uses the CSS calc() function to calculate
widths. However, it does so not make use of the min- or max-width
properties. So, instead of acting like a fluid container, the email switches
between two fixed-width sizes: one for mobile and one for desktop.

On top of that, Stig uses a different structure for the email that is more
similar to hybrid coding. For the base, he uses a series of nested div
elements with CSS classes to target those elements. In the head of the
email, he then uses a few properties to set up the layout.

The divs are set to either display: table; or display: table-
cell; depending on their function. These properties allow for elements
other than actual table elements to function as tables. Combined with the
width property on those elements, you can set up a table-like structure
with actual tables.

However, you probably guessed that this won’t work in Outlook. To
handle display in Outlook, Stig turns to our old friend: the ghost table. He
wraps the layout where necessary with Microsoft conditional tables to a
fixed-width layout that works in Outlook.

�147

http://https//twitter.com/stigm

The Better Email on Design

There’s a lot going on in the mobile-first method, but it’s definitely worth
reading in Stig’s post on Medium.

All of these layout techniques have advantages and disadvantages. As I
mentioned, I’m a big fan of the traditional responsive approach, hybrid
coding, and the table of your dreams. But you shouldn’t let me make
decisions for you. Explore the other approaches described above,
research others you stumble across online, and try to come up with your
own.

�148

http://https//cm.engineering/coding-mobile-first-emails-1513ac4673e

 

Chapter 9

Animation, Effects,
and Interactivity

The Better Email on Design

Chapter 9

Animation, Effects, and
Interactivity

So far, we’ve looked at how to build the typical, static (but responsive!)
email campaign. While this will be most of what you build throughout
your career, sometimes we need something atypical. Something to set
our emails apart from a very crowded inbox. That’s where adding
animation, interactivity, and dynamic content come into play.

In this chapter, we’ll look at a few ways to add movement and interactivity
to an HTML email campaign. These techniques range from the basic
(animated GIFs and simple CSS effects) to the complex (CSS keyframe
animations and the checkbox hack). After figuring out how to pull off
some cool tricks in our campaigns, we’ll see how to make some of that
content dynamic in the next chapter. Let’s get started.

Animated GIFs
One of the simplest ways to add movement and animation to an email
campaign is by using animated GIFs. As we saw in Chapter 5, GIFs are
widely supported across email clients and are one of the image formats
that supports animation. They are commonplace on the web, so sourcing

�150

The Better Email on Design

GIFs is relatively easy. Although creating them from scratch can be more
time-consuming, they are still one of the easier options to implement in
email.

How Animated GIFs Work

In essence, animated GIFs work like a flip book. Within the GIF file, a
series of frames (the pages in a flip book) are saved, each one different
from the last (in theory, at least). Where supported, an email client or
browser will flip through those frames at a relatively high speed. Just like
in a flip book, when those frames are flipped through, it creates an
animation and tricks the eye into seeing movement on screen. It’s the
exact same principle as film—we’re essentially creating little movies within
this single image file.

There are a lot of ways to create GIFs and even more tools out there to
help you during the process. However, for the types of GIFs you see in
emails, there are two major applications used to create GIFs: Adobe
Photoshop and Adobe After Effects.

If you’re not familiar with Adobe Photoshop, it’s an image editor and
graphics creation tool used by countless creators around the world.
While most are familiar with using Photoshop to adjust a photograph,
create a logo, or mock up an email or website, Photoshop includes a
Timeline tool that allows you to create frame-by-frame animations.

�151

The Better Email on Design

Dan Denney’s Photoshop Timeline setup. Source

Using Photoshop’s Timeline, you can create individual frames declared
within Photoshop’s Layers. When a frame is highlighted on the Timeline,
any visible layer will be included within that frame. I really like this
approach. It allows you to pretty quickly build up an animation just by
toggling layers on and off. If you want something always visible within the
animation, just keep that layer always toggled on.

It can be somewhat time consuming building animations in this way, but
the level of control is fantastic. Plus, by building in Photoshop, you can
more thoroughly optimize your animation to keep the file size down,
something we’ll touch on in just a bit.

�152

https://dandenney.com/posts/front-end-dev/photoshops-timeline-rocks

The Better Email on Design

Adobe After Effects is a tool for creating motion graphics. Since the entire
application is geared towards making animations and manipulating
video, After Effects is a great tool for more complicated animations.

It works on a similar principle as Photoshop’s Timeline, but is a bit more
complex. But, if you’re comfortable with After Effects (or don’t mind
learning a new tool), it opens up a lot of possibilities. Being able to fine-
tune animations using curves, add effects to graphics and text, and
quickly implement advanced tricks with After Effects’ animation presets
can be very rewarding.

�153

The Better Email on Design

The one problem with using After Effects is that you will still need to make
a trip through Photoshop. After Effects exports videos or image
sequences, which you will then need to make into a GIF. In this case, you
would import either the video or the image sequence into Photoshop,
which will automatically add it to the Timeline. I would highly recommend
fine-tuning the imported sequence as much as possible to reduce file
size, since this process can yield really large files.

There are other tools out there to help make animated GIFs, but I’ll leave
it to you to hunt them down and try them out.

Including Animated GIFs in an Email

When it comes to actually getting our animated GIFs into an email, things
are extraordinarily easy. Since GIFs are just another image file format, we
will use the exact same method we are used to:

<img src="http://site.com/path/to/animation.gif” alt="Some
Descriptive Text" width="600" border="0" style="display: block;
color: #888888; font-family: sans-serif; font-size: 24px; width:
100%; max-width: 100%;" />

And with that, we have a responsive-by-default, animated GIF ready to
delight our subscribers!

�154

The Better Email on Design

Some Considerations

Animated GIFs are not without their drawbacks. Although they are still
the most reliable way to include animation in an email campaign, they
aren’t supported everywhere. Some email clients will display the GIF, but
won’t animated it—only the first frame of the animation will be shown. It’s
usually a good idea to make sure the first frame includes any necessary
content for getting your message across to subscribers in these cases.

The other major problem with animated GIFs is that they tend to be very
large files. If you aren’t optimizing your GIFs, then you can easily create
bloated files that weigh 2mb or more. I’ve seen animated GIFs in emails
that are upwards of 6mb in size. For desktop clients, this is rarely an issue.
But as more people view emails on their mobile devices, this can create a
couple of problems.

The first problem is that the large files are slow to load, which creates a
poor user experience. You want to get your point across using a clever,
beautifully animated illustration but instead stick your users with a slow,
jittering effect that reflects poorly on your brand.

The second problem is that these large files can eat into users’ data plans.
As most of us know, cellular data plans are very expensive. Forcing our
users to download large files is forcing them to use up valuable data on
an email campaign, something nearly everyone is loathe to do.

�155

The Better Email on Design

Subscribers would much prefer using that data catching up with friends,
browsing online, or watching a video. I’d hate to be the one to push them
over their data limit and force them to incur any fines.

So, it behooves us to always optimize the hell out of all of our images,
especially animated GIFs. Optimization is a bit outside the scope of this
book, but a quick search online will bubble up some interesting articles
on the subject. I also touched on optimizing animated GIFs in this blog
post on the Litmus blog.

CSS Effects and Animations

Another option for creating effects and animation in email is to use actual
code. Over the past few years, CSS has come a long way with effects and
animation. Techniques that previously relied on Photoshopped images,
Flash, or JavaScript can now be accomplished using a handful off CSS
properties. In this section, we’ll look at some of those properties and how
they can be put to use in HTML emails.

Simple Effects

Before we dive into actual CSS animations, I want to talk a bit about using
CSS to achieve some simple, but useful effects. CSS has a number of
properties that can be put to use to add a layer of visual enhancement to
elements in an email.

�156

https://litmus.com/blog/a-guide-to-animated-gifs-in-email
https://litmus.com/blog/a-guide-to-animated-gifs-in-email

The Better Email on Design

There are properties that allow us to further style elements like buttons:

• box-shadow
• text-shadow
• skew()

And also properties that allow us to add basic animations to elements:

• :hover
• transition
• transform
• translate()
• scale()
• rotate()

Let’s take a look at how these work.

When it comes to just manipulating styles with CSS, box-shadow, text-
shadow, and skew() can be very effective in email clients that support
them. Let’s take a look at a simple bulletproof button:

<table border="0" cellspacing="0" cellpadding="0">
 <tr>
 <td style="padding: 20px;">
 <a href="https://thebetter.email" target="_blank"
style="font-size: 18px; font-family: sans-serif; color: #ffffff;
text-decoration: none; border-radius: 8px; -webkit-border-
radius: 8px; background-color: #357edd; border-top: 20px solid
#357edd; border-bottom: 18px solid #357edd; border-right: 40px
solid #357edd; border-left: 40px solid #357edd; display: inline-
block;">Read more here →

�157

The Better Email on Design

 </td>
 </tr>
</table>

By applying box-shadow to that button, we can add a simple drop
shadow beneath the button. This can add a level of dimension to the
button and visually call it out to subscribers, making them more likely to
press that button.

<table border="0" cellspacing="0" cellpadding="0">
 <tr>
 <td style="padding: 20px;">
 <a href="https://thebetter.email" target="_blank"
style="box-shadow: 0px 4px 8px #999999; font-size: 18px; font-
family: sans-serif; color: #ffffff; text-decoration: none;
background-color: #357edd; border-top: 20px solid #357edd;
border-bottom: 18px solid #357edd; border-right: 40px solid
#357edd; border-left: 40px solid #357edd; display: inline-
block;">Read more here →
 </td>
 </tr>
</table>

�158

The Better Email on Design

Likewise, we could add the text-shadow property to the link and
improve the styling there, too. This can be especially useful when using
light text on a colored background, as it makes that text pop out from the
background and can improve readability.

<table border="0" cellspacing="0" cellpadding="0">
 <tr>
 <td style="padding: 20px;">
 <a href="https://thebetter.email" target="_blank"
style="box-shadow: 0px 4px 8px #999999; font-size: 18px; font-
family: sans-serif; color: #ffffff; text-decoration: none;
background-color: #357edd; border-top: 20px solid #357edd;
border-bottom: 18px solid #357edd; border-right: 40px solid
#357edd; border-left: 40px solid #357edd; display: inline-block;
text-shadow: 0px 2px 2px #333333;">Read more here →
 </td>
 </tr>
</table>

�159

The Better Email on Design

Finally, we could use the CSS skew() function to shear that element and
create in interesting, modern effect. This gets us a lot closer to certain
styles that are increasingly used on websites, allowing us to maintain
consistent styles across channels.

<table border="0" cellspacing="0" cellpadding="0">
 <tr>
 <td style="padding: 60px 0;">
 <a href="https://thebetter.email" target="_blank"
style="font-size: 18px; font-family: sans-serif; color: #ffffff;
text-decoration: none; background-color: #357edd; border-top:
20px solid #357edd; border-bottom: 18px solid #357edd; border-
right: 40px solid #357edd; border-left: 40px solid #357edd;
display: inline-block; box-shadow: 8px 8px 0px #000000; text-
shadow: 0px 2px 2px #333333; transform: skew(-10deg,
-6deg);">Read more here →
 </td>
 </tr>
</table>

�160

The Better Email on Design

The important thing to note with these styles is that they allow us to
create beautiful, engaging elements in an email without relying on
images. The same effects can be achieved with image-based buttons, but
as we saw in Chapter 4, image-based buttons have significant drawbacks.
Although these styles don’t work in all clients, they fall back gracefully
and don’t cause any problematic artifacts when they aren’t supported.
They simply don’t display. This is a fair tradeoff for improving the
accessibility and usability of our emails.

Perhaps more important, by relying on code-based buttons and
elements, we can do some lightweight animation with the other CSS
properties mentioned above.

Revisiting our first button from the examples above, we can add target
the button in the head of our document and add a :hover pseudo class
to change the look of that button when a user hovers over it.

�161

The Better Email on Design

.button:hover {
 background-color: gold !important;
 border-top: 20px solid gold !important;
 border-right: 40px solid gold !important;
 border-bottom: 20px solid gold !important;
 border-left: 40px solid gold !important;
 color: black !important;
}

In the code above, we’re simply changing the background and text colors
of the button to further show subscribers that they can interact with it.
One of my favorite CSS properties to add to links is the transition
property, which allows you to animate between two states of an element.

.button {
 transition: all 0.2s ease-in-out;
}

.button:hover {
 background-color: gold !important;
 border-top: 20px solid gold !important;
 border-right: 40px solid gold !important;

�162

The Better Email on Design

 border-bottom: 20px solid gold !important;
 border-left: 40px solid gold !important;
 color: black !important;
}

Looking at the transition property, you can see a few values declared.
In order, they are transition-property, transition-duration,
transition-timing-function, and transition-delay. All of those
could be declared as individual CSS properties on that link element, but
the shorthand transition property helps keep our code clean. Here’s
what each of those does:

• transition-property sets the name of the CSS property you
want transitioned. This can be set to none, all, or a specific CSS
property like color.

• transition-duration sets the length of the transition animation
in seconds or milliseconds.

• transition-timing-function declares how the animation
accelerates over that period of time. You can use keywords like
ease, ease-in, ease-out, and ease-in-out to help smooth out
that animation.

• transition-delay allows you to set a delay on the start of the
transition in seconds or milliseconds.

Knowing that we can use transition to animate elements, we can then
apply the transform property to do some cool stuff. The transform
property allows you to change the position, size, and rotation of an

�163

The Better Email on Design

element by using the following functions: translate(), scale(),
rotate().

The translate() function lets you move the position of an element. If
we wanted to have a button move up on hover—giving it a little nudge
animation—we could apply the following:

.button:hover {
 background-color: gold !important;
 border-top: 20px solid gold !important;
 border-right: 40px solid gold !important;
 border-bottom: 20px solid gold !important;
 border-left: 40px solid gold !important;
 color: black !important;
 transform: translate(0px, -10px);
}

The scale() function lets you scale the size of an element. If we wanted
a button to grow larger on hover, this would work:

.button:hover {
 background-color: gold !important;
 border-top: 20px solid gold !important;
 border-right: 40px solid gold !important;
 border-bottom: 20px solid gold !important;
 border-left: 40px solid gold !important;
 color: black !important;
 transform: scale(1.2);
}

�164

The Better Email on Design

Finally, the rotate() function allows you to rotate the element around a
point of origin. If, for some reason, you wanted your button to spin
around on hover, you could use this:

.button:hover {
 background-color: gold !important;
 border-top: 20px solid gold !important;
 border-right: 40px solid gold !important;
 border-bottom: 20px solid gold !important;
 border-left: 40px solid gold !important;
 color: black !important;
 transform: rotate(360deg);
}

There are other transform functions available, like perspective(),
but I’ll leave those to you to explore.

Like most things in email, these properties and functions aren’t supported
everywhere. Even something as basic as the :hover pseudo class isn’t
supported across all email clients. Still, they are a fantastic way to
progressively enhance your email campaigns and add some lightweight
animations for your subscribers to enjoy.

Keyframe Animations

When we want to get more serious about animation in email and create
more complex visual effects, CSS keyframe animations are the way to do
it. Keyframe animations work very similarly to an animated GIF or
Photoshop’s Timeline. Each animation in CSS requires two things: the

�165

The Better Email on Design

@keyframes rule and the animation property used on the element you
want to animate.

The @keyframes rule is how you declare the frames, or steps, in your
animation. A simple animation might look like this:

@keyframes square {
 25% { transform: translate(100px, 0px) scale(0.5); }
 50% { transform: translate(100px, 100px); }
 75% { transform: translate(0px, 100px) scale(0.5); }
 100% { transform: translate(0px, 0px); }
}

You can see that, like a media query, we open up the keyframes with the
@keyframes rule. We then give it a name for identifying that animation.
Within the curly brackets, you set up the individual steps using either the
from and to keywords or percentages. Within those steps, you declare
which CSS properties you want updated and their new values.

In the example above, we have an animation called square. There are
four steps that animate a box using the transform property and both
the translate() and scale() functions. It’s called square since the
animation will translate the box around a square path on screen. At the
25% and 75% steps, the box is scaled down to half its size.

In that same example, I’m using the following code for that square:

<table align="center" border="0" cellpadding="0" cellspacing="0"
role="presentation" width="100%">

�166

The Better Email on Design

 <tr>
 <td align="left" style="padding: 50px;">
 <div style="background-color: #357edd; border-radius:
4px; height: 100px; width: 100px;"></div>
 </td>
 </tr>
</table>

There’s nothing too fancy going on here: just a simple div that uses
inline styles to create a 100x100 pixel, blue box with rounded corners. If
you’re paying close attention, though, you’ll probably notice that there is
nothing connecting the div in our HTML to the @keyframes animation
in our CSS. So how do we actually get an element to animate?

Enter the animation property. The animation property is how we tie
elements to their animations. It is always applied to the element that you
want animated, in this case our div.

div { animation: 2s infinite square; }

View on CodePen

This is a relatively simple example of the animation property. In order, we
are declaring the animation-duration, animation-iteration-
count, and animation-name. The duration tells the browser or client
how long an animation should last, the iteration count says how many
times it should repeat (in this case, infinitely), and the name is how we
reference the @keyframes rule. There are other values you can set in the
animation property, corresponding to individual CSS animation

�167

https://codepen.io/rodriguezcommaj/pen/72afbc36b2407488be53af38619359cb

The Better Email on Design

properties, but those are better referenced in Mozilla’s Developer
Network documentation.

There are a couple of things to keep in mind when using CSS keyframe
animations.

First, you need to specify unique names for your @keyframe rules. If you
have duplicate animations with different properties being animated, the
last @keyframes rule in your CSS is what is used. The same goes for
duplicate steps within an animation. It’s just like in regular CSS, the
cascade dictates that if there are multiple declarations or styles written,
the last one wins (all other things being equal).

Finally, and perhaps more importantly when it comes to email, the !
important declaration is ignored within the @keyframes rule. The !
important declaration is commonly used to override inline styles within
an email but, in this case, we want to avoid using it when declaring steps
in the animation. Don’t worry though, in clients where keyframe
animations are supported, things tend to work out just fine.

Although the example above is a basic one, I hope it helped explain how
keyframe animations work in CSS. There are a ton of resources online for
CSS animations. If you’re just looking to add some effects to your CTAs,
I’d recommend checking out Hover.css for inspiration. If you really want
to dig into CSS animation, I highly recommend following Rachel Nabors
on Twitter, checking our her course on the subject, or subscribing to her

�168

https://developer.mozilla.org/en-US/docs/Web/CSS/animation
https://developer.mozilla.org/en-US/docs/Web/CSS/animation
https://ianlunn.github.io/Hover/%23effects
https://twitter.com/rachelnabors
http://rachelnabors.com/css-animations-course/

The Better Email on Design

own email newsletter on animation. She also has a book, which I hear is
excellent but haven’t picked up… yet.

Interactivity in Email

The hot trend of the last year or two has been interactivity. Interactive
emails allow subscribers to trigger different states within in email, all in
the inbox. This can be to trigger things like animations or to selectively
display and hide different bits of content in the email. The best way to
wrap your head around interactive email is by seeing a few examples.
Check these out, I’ll wait:

• American Express Advent Calendar by Cyril Gross
• Christmas Tree Decorator by Kristian Robinson
• Sonic The Hedgehog by Kristian Robinson
• Litmus Builder Tour by Kevin Mandeville
• Anything by Mark Robbins

While all of these emails vary in their design and what elements are
interactive, they all utilize the same technique: the checkbox hack. In this
section, we’ll be building a fairly simple slide carousel, with three tabs
that show and hide content based on which tab is selected. But first, let’s
see how the checkbox hack works.

�169

http://webanimationweekly.com/
https://abookapart.com/products/animation-at-work
https://swisscard-cdn.mayoris.com/go/15lj3n7h7t7yt6hy191vk85g7jki3hl8h9i0c8sss2ep/309/preview
https://codepen.io/kristianrobinson/pen/BWJRpg
https://codepen.io/kristianrobinson/pen/pepPyg
https://litmus.com/builder/d965a91
https://codepen.io/M_J_Robbins/%23

The Better Email on Design

The Checkbox Hack

The checkbox hack is a technique wherein you use HTML input
elements to trigger different states and actions within an email. Let’s look
at the input element to orient ourselves:

<input type="radio" name="slides" id="slide1" checked>
<input type="radio" name="slides" id="slide2">
<input type="radio" name="slides" id="slide3”>

The input element has a few attributes which we’ll make use of. The
type attribute declares what kind of input it is. For our purposes, we’ll
almost always use the value of radio or checkbox. The name attribute
names that input for when you’re submitting forms but, for our purposes,
prevents duplicate content within the email. The id attribute is used to
give our inputs unique identifiers for referencing later. And the checked
attribute, which doesn’t require a value, is used to set an initial state for
the input.

You may be asking why, when the technique is called the checkbox hack,
we are using the radio value. While radio and checkbox work in the
same way (in that they toggle between an on or off state), they differ in
that checkbox allows for multiple inputs to be checked, whereas radio
only allows for a single input at a time to be checked. In most cases,
you’re going to toggle between two states, or hide and show content in a

�170

The Better Email on Design

specific container. So the radio input prevents any weird issues with
duplicate content trying to display at the same time.

Along with our three input elements, we will include corresponding
labels for each input:

<label for="slide1" style="background-color: #ff725c;">Slide 1</
label>
<label for="slide2" style="background-color: #357edd;">Slide 2</
label>
<label for="slide3" style="background-color: #ffb700;">Slide 3</
label>

Each label element uses the for attribute to reference which input it
goes with. These are populated with the id values that we set on our
inputs. I also included a background color for each, which goes along
with the background colors of each slide. This is purely for styling, not
functionality.

The labels will act as the buttons or links to the slide content. When
someone presses a label, it will trigger the state of the associated input.
Before we move on, though, we need to create content for the slides.
We’ll contain the content for each slide in a separate div, with a class of
both slide and slideX—the X equal to the number slide. Here’s a base:

<div class=“slide slide1”></div>
<div class=“slide slide2”></div>
<div class=“slide slide3”></div>

�171

The Better Email on Design

You can populate those slides with pretty much whatever content you
want. In this example, I’ve included an heading, image, and paragraph
of text. Without worrying about hiding anything (that will come next), our
slide carousel looks something like this:

�172

https://codepen.io/rodriguezcommaj/pen/32929d995c7d05a8fb2e132d30d0396b?editors=1100

The Better Email on Design

Obviously, that’s not what we want. We need our slides to display
individually and we’ll need to hide those radio inputs. Hiding the inputs is
relatively easy. We’ll simply target all inputs and set them to display:
none;:

input { display: none; }

We’ll also want to style the labels themselves a bit so that they look more
like tabs. So let’s add this:

label {
 color: #ffffff;
 cursor: pointer;
 display: block;
 float: left;
 padding:1em 0;
 text-align:center;
 width: 200px;
}

If we were to preview this now, the slides themselves will still look like
garbage. We can take care of that with the following:

.slide {
 background-color: #000000;
 clear: both;
 color: #ffffff;
 display: none;
 padding: 50px;
 text-align: center;
 width: 500px;

�173

The Better Email on Design

}

.slide1 { background-color: #ff725c; }

.slide2 { background-color: #357edd; }

.slide3 { background-color: #ffb700; }

I’ve applied a background color to each individual slide to correspond to
the background color of it’s matching label. By targeting the slide class,
I’ve given the slides some structure. If you’re previewing this in your
browser, you’re probably wondering why the slides aren’t displaying.
What gives?

Looking more closely at that code above, you can see that, just like the
inputs, I’ve used display: none; to hide those slides. That takes care
of the stacking issue we saw in that first screenshot, but how can we get
our slides to display one-at-a-time in our email?

That’s where this whole checkbox hack comes into play. If you remember,
the first of the three inputs had the checked attribute set. What we need
to do now is change the display property of the slides from none to
block whenever the corresponding label—and in turn, input—has the
checked attribute set. This is accomplished by using the :checked
pseudo class and the general sibling selector (~) to target the
appropriate div based on its class. That sounds confusing but is
clarified in the code:

#slide1:checked ~ .slide1,
#slide2:checked ~ .slide2,
#slide3:checked ~ .slide3 {

�174

The Better Email on Design

 display: block;
}

View on CodePen

When the input with id=“slide1” is checked, the div with
class=“slide slide1” is set to display: block;. The same display
switching happens when one of the other labels is pressed, triggering
the checked attribute on that input. Finally, since we’re use radio inputs
—and not checkboxes—only one of those can be checked at a time,
preventing multiple slides from displaying at the same time. It cleans up
nicely and works a treat.

�175

https://codepen.io/rodriguezcommaj/pen/32929d995c7d05a8fb2e132d30d0396b

The Better Email on Design

One very important thing to note is that, when it comes to the order and
nesting of your HTML, your label, input, and div tags need to exist at
the same level for this to work. Since we’re using the general sibling
selector, those elements need to be actual general siblings. If your
content is nested within another div or table, your interactive
functionality will break.

That’s kind of a lot to take in, so let’s break that down into abstracted
steps you can follow for pretty much any interactive email:

1. Create inputs with specific id attributes for targeting those inputs
2. Create labels to use as buttons with for attributes referencing the

id of the inputs
3. Create div containers to house the content you want to show and

hide
4. Use CSS to hide the inputs
5. Use CSS to hide the containers and content
6. Style your labels and content as needed
7. Use the :checked pseudo class and general sibling selector to

display content when an input is toggled
8. Test, test, test

Things can definitely get complicated depending on what you’re making
interactive, but this is the foundation on which all interactive emails are
built.

�176

The Better Email on Design

Support and Fallbacks

The thing to remember about interactive emails is that they absolutely do
not work everywhere. Even taking email clients out of the equation, not
all email service providers support sending interactive emails. The
biggest bottleneck for ESPs is MailChimp, which has a massive user base.
MailChimp will strip form elements (inputs and labels), rendering that
code useless.

When it comes to email clients, quite a few won’t support the techniques
described above. Perhaps most importantly, Outlook 2007-2016,
Outlook.com, and Office 365 won’t work. Other clients like Yahoo! And
AOL (Oath?) have only limited support. And, keep in mind that email
clients (especially webmail clients) are in a near constant state of
development, so support can change any day.

All that being said, you shouldn’t let that dissuade you from creating and
sending interactive email campaigns. Apple Mail on both desktop and
iOS support all of the techniques described here. According to Litmus,
which tracks over a billion opens a month, Apple Mail collectively
accounts for roughly 48% of the email client market share. That’s a huge
audience that can potentially interact with your emails.

The important thing to keep in mind is that you should be targeting those
email clients and providing proper fallbacks for clients that don’t support
interactive emails. Fortunately for us, targeting Apple Mail is relatively

�177

http://emailclientmarketshare.com/

The Better Email on Design

easy. Since those clients use the WebKit rendering engine, we can use
the following media query for targeting:

@media screen and (-webkit-min-device-pixel-ratio: 0) { }

Then, within that media query, we can include all of the CSS we used
above for the interactive email. This takes care of hiding a lot of styling
and the functionality, but we would still need to hide the HTML from
clients, too. For hiding content across clients, you can use the following:

<div style="display: none; max-height: 0; overflow: hidden;"></
div>

It’s the same code that powers our hidden preview text. You may run into
an issue with Outlook selectively not hiding content, in which case you
can wrap that content in a conditional comment and apply the mso-hide:
all; rule inline on an element, like so:

<!--[if !mso]><!-->
<table align="center" border="0" cellpadding="0" cellspacing="0"
role="presentation" width="100%">
 <tr>
 <td align="left" style=“display: none; mso-hide: all;
max-height: 0; overflow: hidden;”>
 CONTENT GOES HERE
 </td>
 </tr>
</table>
<!--<![endif]-->

�178

The Better Email on Design

With your interactive elements hidden, you just need to ensure that you
provide a decent fallback. In most cases this amounts to still displaying
the content (like our slides, just not the inputs and labels) and stacking
that content into a more traditional email design. Think of it like you
would any progressive enhancement: you create the base layout, then
enhance that layout with extra styling and interactivity in clients that
support it.

There are a lot of nuances to interactive email and a lot of different
techniques you can put to use. If you want to take things further, check
out these resources online:

• Justin Khoo’s Interactive Email Examples
• Justin Khoo’s CSS Support Chart
• Mark Robbins’ Modern CSS and Interactive Email Presentation
• Mark Robbins’ Punched Card Coding Article
• Kristian Robinson’s CodePen Account
• Rebel’s Blog
• Litmus’ Blog

And thank you to the folks above (and the many more) that have
pioneered these techniques and taught it to the rest of us.

�179

http://freshinbox.com/resources/techniques.php
http://freshinbox.com/resources/css.php
https://vimeo.com/181481382
https://www.webdesignerdepot.com/2015/10/punched-card-coding-the-secret-of-interactive-email/
https://codepen.io/kristianrobinson/%23
http://blog.gorebel.com/
https://litmus.com/blog/?s=interactive

 

Chapter 10

Different Development
Workflows

The Better Email on Design

Chapter 10

Different Development
Workflows

We’ve looked at a lot of concepts and code over the last nine chapters.
One of the last few things I want to address in this book are different
development workflows. So far, we’ve only looked at hand-coding email
campaigns. Although this works for a lot of people (me being one of
them!), there is an entire world of workflows out there that could help
improve your productivity and decrease your build times, allowing you to
focus on what’s truly important in an email: the content.

In order of increasing complexity, here are some different development
workflows you should consider in your own process.

Old School Development
What I would call old school development is what you’ve been exposed
to already. It’s largely hand-coding HTML and CSS in your text editor of
choice, with the files saved locally on your computer. This has worked
well for a lot of people for a very long time. If this is what you’re
comfortable with, then I don’t think there’s much need to blow up your
process.

�181

The Better Email on Design

Hand-coding definitely allows for the most control over your code. You
can update, format, and build your emails however the hell you want,
without being subject to the whims of someone else’s tools. It may
potentially be slower, but for individual developers, smaller projects, and
even smaller teams, I think it’s definitely the way to go.

That being said, there are some tools that could make your old school
development workflow a little better. My two favorites are using code
snippets and relying on a tool called Emmet.

Code snippets are simply saved pieces of code that you can trigger
within your text editor. Most text editors allow you to declare your own
snippets. For example, Dreamweaver has an entire Snippets panel within
the application. It comes with a lot of prebuilt code snippets and allows
you to create your own using a graphical interface. If you’re a
Dreamweaver user, this video might help you out.

�182

http://https//helpx.adobe.com/dreamweaver/atv/cs6-tutorials/using-snippets.html

The Better Email on Design

Sublime Text (and other pure text editors) allows you to declare snippets
in a simplified XML file. It’s not as nice of a process as in Dreamweaver,
but you get the benefit of being able to tap into a vast community of
developers, plugins, and modern tools, instead. Plus, most modern text
editors are a hell of a lot faster than Dreamweaver ¯_(ツ)_/¯

Personally, I use a tool on my Mac called Alfred to store and trigger all of
my coding snippets. Within Alfred, I have a few folders for different uses,
including a “Coding” folder that stores my code snippets.

I can quickly add new snippets, set up triggers for them, and even place
my cursor anywhere in the snippet after it is triggered. An example

�183

http://www.sublimetext.info/docs/en/extensibility/snippets.html
https://www.alfredapp.com/

The Better Email on Design

snippet is a heading. By typing ,emailh1 in my text editor, the following
is automatically written out:

<h1 style="margin: 0;">Cursor is automatically placed here.</h1>

Snippets are a wildly useful tool and greatly speed up my coding. I highly
suggest setting up some of your own.

You won’t want to set up snippets for absolutely everything, though.
Snippets are great for commonly used, larger pieces of code but, for
simpler bits of code or quickly building up code structures, I’d suggest
using a tool like Emmet. Emmet (formerly Zen Coding) is a plugin for
most modern text editors that offers a similar functionality to snippets,
but with a lot more power. Once Emmet is installed, I can type p, press
the tab button, and have Emmet automatically insert:

<p></p>

This is a simple example. Emmet has operators that allow you to do
amazing things really quickly. Let’s say that I wanted to add a table with
three rows. Each row needs to contain a table cell with an h2, img, and p
tag inside. Instead of writing that all out by hand (and wasting a lot of
valuable time), I can write the following in Emmet:

table>tr*3>td>h2+img+p

Emmet then spits out:

�184

https://emmet.io/

The Better Email on Design

<table>
 <tr>
 <td>
 <h2></h2>

 <p></p>
 </td>
 </tr>
 <tr>
 <td>
 <h2></h2>

 <p></p>
 </td>
 </tr>
 <tr>
 <td>
 <h2></h2>

 <p></p>
 </td>
 </tr>
</table>

That’s pretty damned amazing, but that’s just the tip of the iceberg.

Along with code snippets and Emmet, I find it valuable to add some sort
of version control system to your old school workflow (or any workflow,
for that matter). Version control systems allow you to keep track of the
changes you make to a file by “checking in” files to the system. This can
save your ass, as coding mistakes are bound to happen. It also helps
when you’re trying to change a lot of code to test out a new idea or fix a

�185

https://docs.emmet.io/

The Better Email on Design

problem but you want to have a backup of your code if you need it later.
Instead of manually copying and pasting files or code between files, and
naming those files something unique every time, you can “branch” your
code within your version control system and make all the changes you
want without having to worry about losing older versions.

Two of the most popular version control tools are GitHub and GitLab.
Both are free to start using and offer nearly identical features, but have
their own advantages.

GitHub has a massive community using its service and is built with social
components baked in, making it easy to find, fork, and use code that
others have written. If you want to work with a team, get access to some
more advanced features, or have your code kept private from others,
you’ll need to pay for your account. At this point, it’s almost required to
have a GitHub account if you’re a coder of any sort. The community has
flocked to the service and a lot of employers look at your GitHub account
as a measure of your skills.

GitLab definitely has less of a community around it, but has some cool
features that still make it worth checking out. My favorite is that you can
have private code repositories on their free plan. Actually, you get a ton
of amazing features on their free plan. They also have great build tools,
which they call their Pipeline, which can be useful if you start digging into
more complex web projects. I’m actually an avid GitLab user and prefer it
over GitHub.

�186

http://github.com
http://gitlab.com

The Better Email on Design

Regardless of which service you use, a version control system is a great
way to back up your code, quickly iterate on ideas, and share code with
others.

Email Frameworks

The next step up on the workflow ladder is using an email framework for
coding your emails. Email frameworks are prebuilt collections of code
that allow you to write your emails in an abstracted coding language that
is then compiled into proper email code. This is nice in that you don’t
have to remember all of the intricacies of coding an email to build one.
You can safely ignore a lot of the bugs and hacks we’ve gone through in
this book and focus more on the content of your campaign.

My favorite current email framework is MJML from the folks at Mailjet.
MJML, which stands for Mailjet Markup Language, was designed in-
house by their team of experienced email developers. It does require you
to install it, which can be tricky depending on your familiarity (or lack
thereof) of the command line. Once it is installed, you can write in their
markup language to generate your emails:

<mjml>
 <mj-body>
 <mj-container>

 <!-- Company Header -->
 <mj-section background-color="#f0f0f0"></mj-section>

�187

https://mjml.io/
http://mailjet.com

The Better Email on Design

 <!-- Image Header -->
 <mj-section background-color="#f0f0f0"></mj-section>

 <!-- Introduction Text -->
 <mj-section background-color="#fafafa"></mj-section>

 <!-- 2 columns section -->
 <mj-section background-color="white"></mj-section>

 <!-- Icons -->
 <mj-section background-color="#fbfbfb"></mj-section>

 <!-- Social icons -->
 <mj-section background-color="#f0f0f0"></mj-section>

 </mj-container>
 </mj-body>
</mjml>

The following will create a skeleton for your email. To add something like
a two-column section, you could use something like this (taken from
MJML’s documentation):

<!-- Side image -->
<mj-section background-color="white">

 <!-- Left image -->
 <mj-column>
 <mj-image width="200"
 src="https://designspell.files.wordpress.com/
2012/01/sciolino-paris-bw.jpg" />
 </mj-column>

 <!-- right paragraph -->
 <mj-column>

�188

The Better Email on Design

 <mj-text font-style="italic"
 font-size="20"
 font-family="Helvetica Neue"
 color="#626262">
 Find amazing places
 </mj-text>

 <mj-text color="#525252">
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Proin rutrum enim eget magna efficitur, eu semper augue semper.
Aliquam erat volutpat. Cras id dui lectus. Vestibulum sed
finibus lectus.</mj-text>

 </mj-column>
</mj-section>

While you’re still writing code, it tends to be a lot cleaner than the typical
HTML and CSS you would write for an email. Once you have your MJML
code written, MJML’s build tool will generate the HTML and CSS you
need for you, which you can then take and upload to your email service
provider.

MJML has a ton of useful components built in, making it easy to build out
most common email designs. Even better, you can build your own
components to make customizing your templates even quicker. MJML
also has great tooling around it, with plugins for popular editors, and a
wonderful, active community. You should definitely check it out at
MJML.io.

Another interesting choice is Foundation for Emails by Zurb.
Foundation offers much of the same functionality as MJML but has a bit

�189

http://MJML.io
https://foundation.zurb.com/emails.html
https://zurb.com/

The Better Email on Design

of a different feel to it. Your code is more or less straight HTML, but you
use classes that invoke Foundation’s CSS to style your email. Foundation’s
build tool then allows you to inline that CSS to generate a send-worthy
campaign.

Foundation does have its own templating language, similar to MJML’s
<mj-section> type tags. It’s called Inky. If anything, it’s actually a bit
easier to understand than MJML’s version. Here’s what a single-column
section would look like:

<container>
 <row>
 <columns>Put content in me!</columns>
 </row>
</container>

There is a lot more to Foundation, which you can read about in their
documentation.

Again, I like both frameworks but prefer MJML. It feels like it’s built by
people more experienced with HTML email and has a really great
community of folks to help out if you run into any issues.

Email frameworks can be a fantastic way to speed up your process and
can be wildly helpful if you’re working on a larger project or larger team.
They help get everyone on the same page and following a well-defined
methodology for creating emails, which can help when you have more

�190

https://foundation.zurb.com/emails/docs/index.html

The Better Email on Design

than one or two people working on emails that need to maintain a
consistent set of standards.

My main complaint with email frameworks is that they abstract away from
the email itself. It’s harder to fully understand what’s going on in your
email code since it’s hidden away. If you’re not already familiar with
coding HTML emails and you need to poke around in the generated
code from your framework (which can easily happen when
troubleshooting problems) then you’re going to get lost and have a
rough time. They also tend to be a bit harder to customize. Each email
framework comes with its own assumptions about how an email should
be built (and to a lesser extent, how it should look). If you need to create
emails with different visual looks to them, it might be easier to hand-code
a bespoke template instead.

Build Tools

If you want to get more control over your development workflow, but
want some of the advantages of using an email framework, you may want
to look into using a build tool or task runner. Build tools are programs
that allow you to automate tasks. For email, this might include the
following:

• Automatically inlining CSS
• Build templates from different partial files
• Automatically build localized versions of emails

�191

The Better Email on Design

• Build different variations of emails based on specified variables

There are a lot of build tools out there, but the two major players are
Grunt and Gulp. Both are based on the JavaScript programming
language and need to be installed through the command line. Once
installed, you still have to do a bit of work for setting up the build tool. In
the case of Grunt, you’ll need to create a new Grunt project, which
includes two files: package.json and Gruntfile.js. The JSON
package is used to store information about your project, including which
Grunt plugins are required to complete any tasks. There are a massive
number of plugins in the Grunt ecosystem (at the time of writing 6,280),
so you can find a plugin to handle pretty much anything you may need to
do. The Gruntfile is used to actually load your plugins and then define
any custom tasks you need performed.

Getting into the weeds is most definitely outside the scope of this book,
but you can find out more about both tools using the links listed earlier.

Build tools really start to shine when you start working on larger email
projects. For example, let’s say that you work for an international retailer
that sends dozens of different templates that all need to adhere to brand
guidelines (which may change depending on a specific region) and that
need to be localized for a region’s language. Using other workflows, that
would take a lot of manual work and be absurdly time-consuming. Using
a build tool, you could set up the following:

�192

https://gruntjs.com/
https://gulpjs.com/

The Better Email on Design

• Individual partial files that control components like headers, footers,
product sections, CTAs, etc.

• Variables that control all aspects of those designs, including styling
like colors, logos, and fonts as well as individual pieces of copy for
those components

• A translation table for all of your copy, typically a CSV file

Then, using the build tool, you can automatically combine all of those
elements into the required emails and even test them and upload them
to your email service provider, ready to send.

What’s more is that you have full control over the HTML and CSS. Since
you’re writing it all yourself, you can code using whatever techniques you
want and know that you can (relatively easily) dig in and troubleshoot or
update that code whenever you need to.

The major drawback of using a build tool is that it takes a fair amount of
initial work to get running. You need to install the tools and then spend a
good amount of time getting familiar with them, researching plugins that
you may need to use, then set up and test your build process to make
sure it does what you need. Most also assume some familiarity with a
programming language like JavaScript, which can be intimidating for
some.

For individual developers working on smaller projects or bespoke
templates, I don’t think they are worth the effort. For everyone else,
though, they are definitely worth trying out.

�193

The Better Email on Design

Commercial Tools
The last level of workflows that I want to touch on are using commercial
tools. In particular, two commercial tools: Litmus Builder and Taxi for
Email.

Litmus Builder (full disclosure in case you haven’t figured it out yet: I
work for and use Litmus tools on the regular) is an online code editor and
testing tool built by Litmus. For all intents and purposes, it is a complete
build tool for email development. But, it doesn’t require all of the setup
and maintenance of a build tool like Grunt or Gulp. You could easily use
Builder as a simple code editor and work in it old school-style, but you
could greatly improve your workflow by relying on its more powerful
features.

Litmus Builder includes support for partials and code snippets, has a
custom-built CSS inliner specifically for email, and has tools to help you
quickly navigate and test your emails in over 70 different email clients.
Hell, you can even automatically add tracking parameters to all of your
links and sync your emails (including images with updated paths) to your
ESP.

There’s a lot to Builder, but this series of articles on the Litmus Blog
(penned by yours truly and my good friend Jaina!) will help get you up to
speed.

�194

http://litmus.com/email-builder
http://litmus.com
https://litmus.com/blog/litmus-builder-essentials-getting-to-know-email-builder

The Better Email on Design

Taxi for Email, created by the folks over at Action Rocket, is a little
different from Builder but can be just as beneficial to use. It acts kind of
like a content management system for email campaigns, and decouples
the content of the email from the design and code underneath. While it’s
not a build tool, it can help with the email creation process by allowing
you to build out and upload components that marketers can then use to
build emails without having to mess with code.

This can be a huge win for teams that divide the development and
copywriting, strategy, and marketing people. Email developers can build
components however they want, upload them to Taxi, then give
marketers access to Taxi’s drag-and-drop interface to build out individual

�195

http://taxiforemail.com/
http://actionrocket.co/

The Better Email on Design

campaigns. Marketers don’t have to touch the code and Taxi won’t mess
with your code, ensuring that your well-tested, robust components won’t
break. Like Litmus Builder, Taxi also offers connectors that allow you to
sync your campaigns and assets with your ESP.

Both tools address different concerns in the email creation process but,
like the other tools mentioned in this chapter, can greatly improve your
productivity and efficiency. The major drawback is that both tools cost
money, which could be a blocker for some.

There are a lot of other tools and workflows out there. It seems that nearly
every team has their own way of doing things. A great resource for
exploring how other people create emails is Litmus’ 2017 State of Email
Workflows report (which is free BTW). Regardless of what you ultimately
end up implementing, spending time on refining your workflow will pay
dividends in the long run.

�196

https://litmus.com/lp/state-of-email-workflows-2017
https://litmus.com/lp/state-of-email-workflows-2017

 

Chapter 11

Troubleshooting Emails

The Better Email on Design

Chapter 11

Troubleshooting Emails

While most of us would love to spend our time coming up with and
implementing beautiful email designs, a large part of your time working
in email will be spent on troubleshooting problems.

As we’ve discussed before, email clients are a fickle bunch. Varying levels
of support for HTML and CSS, combined with strange, often
undocumented bugs, lead to lots of problems in email campaigns. Our
most important job as email designers and developers, then, is to seek
out those bugs, understand that support, and figure out solutions to any
problems we encounter.

That may seem like a daunting task, but I’ve worked out a framework to
help you troubleshoot and fix any problems that may arise. This
framework (I use that term loosely) was developed this past summer for a
series of workshops at Litmus Live. With the help of my friend and
colleague, Jaina Mistry, I put together a set of steps and tips to help
troubleshoot any email problems.

�198

http://litmus.com/conference
http://twitter.com/jainamistry

The Better Email on Design

Troubleshooting Step-by-Step

I’ve broken troubleshooting down to four main steps:

1. Testing an email
2. Checking images
3. Checking code
4. Getting help

These four steps will allow you to troubleshoot (and hopefully fix) any
potential problems you may encounter. Let’s see how the work together.

Testing an Email

The first part of troubleshooting is actually identifying problems. At no
point should you ever send an email campaign without first testing to see
how it displays in different email clients and on different devices.

There are a few ways to go about testing. Let’s look at the pros and cons
of each.

Sending a Test Campaign

The first—and easiest way—to test HTML emails is by sending yourself a
test of that campaign. By using your email service provider or a one-off
sending tool (like PutsMail), you can quickly see how your email looks

�199

http://putsmail.com

The Better Email on Design

right in your own inbox. Most ESPs allow you to set up a list of email
addresses for specific purposes and then send test emails to that list.
When you’re developing your email, you can load your campaign into
your ESP and then send a test email to yourself, checking it in whatever
email clients you have on your test list.

If you don’t have access to your ESP (common in larger email teams),
then you can use a service like PutsMail or Litmus Builder to quickly
send yourself a test campaign.

Whatever method you use, you’ll want to make sure that you’re sending
tests to as many email clients and services as you can get your hands on.
This is relatively easy for webmail clients, since services like Gmail, Yahoo,
and Outlook.com allow you to set up free email accounts. But for desktop
and mobile clients, it’s harder to set up multiple testing accounts since
some clients and apps require specific operating systems or devices to
run on.

Still, sending yourself a test campaign and seeing how your email looks
in real, live email clients is the best way to understand exactly what your
subscribers are seeing. And, if you’re building and sending interactive or
dynamic campaigns, you have to test those features in live clients to
ensure they are working properly.

�200

http://putsmail.com
http://litmus.com/email-builder

The Better Email on Design

Testing on Real Devices

Most beginning developers will start testing by sending themselves
campaigns and checking to see how they render in a handful of email
accounts. But, you can take that a step further by setting up a device lab
to test on as many devices and in as many email clients as possible. This
is similar to the last approach in that you will be sending yourself test
campaigns either through your ESP or something like PutsMail, but this
approach focuses on setting up individual, real devices and machines to
see how your email renders in any environment.

�201

The Better Email on Design

In the photograph above, you can see a real device lab from the email
agency StyleCampaign. StyleCampaign maintains dozens of real
devices, all running various email clients and operating systems, to allow
them to test their campaigns in real-world conditions. This is the ultimate
method of testing, as it gives you the most realistic experience compared
to what your subscribers see. And, like I mentioned before, if you’re
sending interactive or dynamic emails, this is the only way to truly test
that functionality.

The problem with testing on real devices is that it can get very expensive
and time-consuming to set up and maintain those devices. While device
labs can be impressive to clients (and necessary in some instances), most
email developers can use more affordable options to test their
campaigns…

Using a Testing Service

The best option for most email designers and developers to test their
campaigns is to use a testing service. There are a few online services that
allow you to automatically test your campaign in dozens of email clients,
but my favorite is Litmus. While I actually work for Litmus, I was a Litmus
customer and user for about three years prior to joining the company.
During that time, and since then, I’ve used Litmus to vastly speed up the
development and testing process.

�202

http://stylecampaign.com/blog/2014/04/managing-a-device-lab/
http://litmus.com

The Better Email on Design

Testing services like Litmus allow you to either send a campaign to the
service or upload your code for testing. Once they have the code, they
run it through dozens of email clients, take screenshots of your email in
those clients, and then display the results. You can then look through
those screenshots to identify any rendering problems that you need to
fix.

Testing services used to be quite slow, but in recent years have drastically
improved. Litmus now allows you to test in (as of this writing) over 70
different email clients, with screenshots returned in mere seconds.

Although testing services cost money (typically a monthly or annual fee),
they obviate the need to manually sign in and check multiple email
accounts or maintain an expensive device lab.

�203

The Better Email on Design

Regardless of what approach you use to test your email campaigns,
seeing how they display across different email clients and devices is the
first step in troubleshooting any problems.

Checking Images

Before you start messing with your code after encountering a problem, I
recommend you first look at any images in your campaign to see if there’s
a problem. A lot of times, new email developers mistake a problem with
one of their images for a coding problem and waste a lot of time trying to
figure out what is usually a quick fix. With that in mind, here’s what you
should check first if your email campaign is looking off in any email
clients.

Image Paths

As we discussed in the earlier chapter on images, all images in an email
require the use of absolute paths. All of your images need to be hosted
on a publicly accessible server, with the src attribute in the img tag
pointing to the URL of the image. Email clients don’t have a concept of
relative paths, so this won’t work:

�204

The Better Email on Design

This is an extremely common mistake developers make, especially when
building emails locally on their machine. Most developers create a folder
for an email, in which they save the email HTML along with images for the
campaign. By calling those images using a relative path, developers can
quickly update those images in their campaign until the design is perfect.
But, they sometimes forget to upload those same images to a server and
update the paths in the HTML, causing display issues when testing their
campaigns.

Double-checking that you’re using absolute paths—and your images are
hosted on a publicly accessible server—is always my first stop for
troubleshooting. I’ve been doing this for the better part of a decade, and
I still make this mistake constantly.

Unsupported File Types

Again, just another reminder to use supported image file types in your
campaigns. Most email clients support a limited set of image file types,
namely PNG, JPEG, and GIF. Occasionally, design or marketing teams, or
outside agencies, deliver assets in a different file format and we forget to
convert it to a usable one. Then, when our campaigns fail to render
properly, we scramble to identify the issue.

Just double-checking that you’re using a supported file type, or that you
fallback to a supported format when using something more experimental
like SVG, can save you a lot of time when troubleshooting.

�205

The Better Email on Design

Checking Code

If you’re confident that your images aren’t the problem, the next step is to
locate problems within your HTML or CSS. This can sometimes be harder
than you would expect, especially considering that HTML and CSS that
works in one email client won’t work in another.

My first step in checking code is usually isolating the problematic code.
Knowing where to check in the code gets you halfway there, then it’s just
a matter of fixing things. There are a few tricks and tools you can use to
isolate the problem areas in your code. Let’s see how they work.

Outlining Code Components

The easiest way to hone in on a problem is to visually outline the different
parts of your email. Then, once those parts are outlined, identify which
table, row, or cell is causing the issue and look at that bit of code in
isolation.

One way to outline parts of your email is to add borders to your tables
and table cells. If you recall from chapter 2, we always override default
styling on tables by applying a border=“0” attribute to the table tag.
By switching that to something other than zero, you can quickly view
those individual components to zero in on the problem. An easy way to
do this is to pop open the HTML of your email in your favorite text editor

�206

The Better Email on Design

and go choose “Find and Replace” in the menu. Then you can simply find
all instances of border=“0” and replace them with border=“1”. Once
you figure out your problem, just swap that back to zero and you’re good
to go.

Another option is utilizing built in tools within your text editor. Both
Adobe Dreamweaver and Litmus Builder have “design” or “grid” views.
When triggered, these tools will automatically overlay lines around
individual tables and cells within your email.

Both of these options allow you to see exactly where your problems are
and can be indispensable for email designers and developers.

�207

The Better Email on Design

Isolating Components

Once you’ve outlined and zeroed in on the problem, it’s often beneficial
to isolate that component and work on fixing it away from the rest of the
email. We’ve previously talked about the benefits of using modular
design and discrete components for building campaigns. These modules
really start to shine when it comes to troubleshooting. Since those
components are largely decoupled from each other, you can remove the
problematic one and test it in isolation.

Simply copy and paste that module into its own HTML file and work on
fixing any problems. Then you can test those fixes on your own devices or
using a service like Litmus to ensure that everything renders properly
across different email clients. Once you’re confident that the module is
fixed, you can reintroduce it to the rest of your email and test it as a
whole.

That two step process—outlining and isolating components—is where
nearly all of my troubleshooting starts.

Common Code Problems

When you are looking at your code, there are a few things you should
look for before digging in much deeper. HTML, while forgiving on the

�208

The Better Email on Design

web, can be fickle in the email world. It’s for that reason that I recommend
reviewing your code for any of the following:

• Missing HTML tags
• Missing delimiters
• Typos
• Unsupported HTML and CSS

Missing HTML tags are a very common problem. Most of us work under
very tight timelines and we can often forget to close out an HTML tag.
Especially if you’re using an older text editor or hand-coding your email,
missing tags are a common cause of rendering issues. There are a few
ways to avoid missing HTMl tags.

The first is by double-checking your code after writing it. As you become
more familiar with coding, you’ll get a better feel for how your code
should look and be able to more easily spot missing HTML tags.

The second is by relying on your text editor or plugins for your text editor
to identify missing tags for you. Most modern text editors either support
highlighting missing tags by default or can be extended with plugins or
add-ons to allow for the same functionality. This is my preferred method,
since it’s completely automated. I believe that the following all support
highlighting missing tags by default:

• Sublime Text
• Atom

�209

The Better Email on Design

• Visual Studio Code
• Dreamweaver
• Coda

If you run into an issue where you don’t see missing tags highlighted, you
may need to check your application’s settings. If all else fails, try
searching online for a plugin to extend your text editor.

Finally, you could also use a tool like the W3C Markup Validation
Service to identify problematic HTML for you. The W3C Markup
Validation Service allows you to upload HTML that is then scanned for
issues. It will highlight specific pieces of code that could cause problems,
even going so far as to tell you what line that code is on. It’s wildly handy
but comes with one major caveat:

HTML emails use a lot of deprecated code and hacks that will be flagged
by the W3C Validation Service. While it may seem like you have a lot of
errors and warnings in your code, you can generally ignore most of them.
Just pay attention to errors like “unclosed element”.

Missing delimiters can be a problem as well. Delimiters are characters
like “, ;, <, >, {, and } that are used to open and close sections of tags,
properties, and other code. Again, when hand-coding especially, it’s easy
to miss some of these and they could cause major rendering issues.
Using the same methods as mentioned in the previous paragraphs is the
best way to check for missing delimiters.

�210

http://validator.w3.org/

The Better Email on Design

Typos can be a little trickier to account for. They are relatively common
even amongst the best coders and, unfortunately, not all text editors can
pick up on and highlight them. A keen eye is your best bet for keeping
track of them.

Finally, the biggest problem you’ll run into with coding emails is a shear
lack of support for HTML and CSS across clients. As we’ve seen before,
email clients and their rendering engines are a far cry from current web
browsers. The web standards movement of the mid-2000s flew right by
email client vendors, so we’re stuck picking up the pieces and making the
best of a shitty situation.

Understanding which clients support what HTML and CSS is the best way
to become a better email developer. Although a lot of that
understanding comes with practice and time in the industry, there’s one
killer tool at our disposal for checking support.

Campaign Monitor’s Ultimate Guide to CSS is a massive guide to most
CSS properties and features and their support across the most popular
email clients in use today.

�211

https://www.campaignmonitor.com/css/

The Better Email on Design

Campaign Monitor's CSS Guide.

It has been around for years, but received a huge update in September
of 2017 and now tests 278 different CSS properties and features across
the following 35 email clients:

Desktop Webmail Mobile

AOL Desktop AOL Mail Android 4.2.2 Mail

IBM (Lotus) Notes 9 Gmail Alto on Android

Outlook 2007-2016 Outlook.com Blackberry

Outlook for Mac G Suite Gmail on Android IMAP

Apple Mail 10 Google Inbox Android 4.4.4 Mail

Outlook 2000-2003 Yahoo! Mail Alto on iOS

Outlook Express Gmail on Android

Postbox Gmail on iOS

�212

The Better Email on Design

that you can dive in and find exactly what you’re looking for. Get familiar
with this tool, it will be your savior countless times throughout your
career.

Getting Help

Sometimes, in spite of our knowledge, skills, and best intentions, we still
can’t figure out a problem on our own. This is where asking for help can
save your tail. There are a lot of places and people to turn to in the email
world, but the following are the ones I constantly turn to and believe are
the best of the bunch.

The Litmus Community

The Litmus Community, founded in 2013, consists of thousands of email
marketers, designers, and developers of all skill levels sharing
knowledge, posting resources, and helping troubleshoot even the
trickiest problems. There are thousands of discussions on all sorts of
email topics, code snippets to use in your own campaigns, free, fully
responsive templates on which you can build, and even a jobs board
specifically for email professionals.

I may be biased since I helped build and grow the Litmus Community,
but it truly is a special place. Some of the smarted email pros in the world
hang out here and all of them are eager to help troubleshoot issues or
answer questions.

�213

https://litmus.com/community

The Better Email on Design

You can sign up for free and start posting discussions. If you are looking
for a specific issue, I’d recommend searching the forums first. Chances
are good that someone else has had the same problem before and a fix
has already been posted.

Twitter

Twitter is another great resource for email folks. People in email tend to
be very vocal and active on Twitter and are always up for a good
discussion on damned near any topic. Some good hashtags to follow
include:

�214

The Better Email on Design

• #emaildesign
• #emaildevelopment
• #emailmarketing
• #litmuslive
• #emailgeeks

#EmailGeeks

Speaking of #emailgeeks, there is an entire Slack group devoted to them.
Created by Viktor Edvardsson, the #emailgeeks group is free to join
and—at the time of writing—consists of a little over 1,500 extraordinarily
friendly, intelligent, and helpful email folks. Plus, there are dedicated
channels discussing things like code, design, accessibility, automation,
jobs, deliverability, and more.

Stack Overflow

A much larger resource is Stack Overflow, a gigantic community of
designers and developers posting questions on all things related to the
web and programming. While the HTML and CSS tags can be helpful,
you’ll find both the HTML-Email and HTML-Templates tags a bit more
focused and relevant. My one word of caution is that a lot of questions
may have outdated replies or information, or could be answered by
developers without a strong knowledge of the realities of coding HTML
email campaigns.

�215

https://email.geeks.chat/
https://stackoverflow.com/questions/tagged/html-email
https://stackoverflow.com/questions/tagged/email-templates

The Better Email on Design

The Better Email Resources

Finally, a shout-out for my own resources. I maintain a resources page on
The Better Email that acts as my personal, email-related bookmarking
service. There is information on everything from tutorials and articles to
code frameworks, tools, and even inspirational examples of emails. I also
have a directory of some of the major thought leaders in the industry.

I try to keep it as up-to-date as possible. You should definitely check it
out.

Again, there is a lot that can go wrong in an email campaign. Hopefully
these steps will help you troubleshoot any problems you may encounter.
And remember, if all else fails, just ask someone for help. Chances are
good that the problem’s been encountered before, so there’s almost
certainly a solution out in the wild. You just need to find it.

�216

https://thebetter.email/resources
https://thebetter.email/resources
https://thebetter.email/resources
https://thebetter.email/resources

 

Chapter 12

Questioning
Best Practices

The Better Email on Design

Chapter 12

Questioning Best Practices

I want to end this book with a quick rant about best practices in email
design and development. What we’ve looked at over the course of
eleven chapters are what most would term best practices in email. Best
practices are well-tested, generally agreed upon techniques for getting
work done with a minimal amount of fuss.

While the techniques in this book will get you going, not all of them
should be applied all of the time. And they should never stand in the way
of trying something new and different.

If email developers stuck to the best practices of even six years ago, we
wouldn’t have interactive emails. If you go back about ten years, you
wouldn’t really have hybrid coding or bulletproof buttons.

There are a lot of different ways to accomplish the same tasks in email
design. I know of a lot of them, but I am 100% sure that I don’t know them
all. People are constantly taking ideas from the web and programming
worlds and applying them to emails.

I encourage you, in the strongest terms possible, to do the same.
Experiment and never stop learning.

�218

The Better Email on Design

If you’re looking for some ways to experiment, a few options to look into
come to mind…

The holy grail of email development is getting rid of tables. Tables are
still absolutely necessary in 99% of all emails, due solely to Microsoft
Outlook. In the past year or so, some progress has been made on getting
rid of tables. My own email newsletters use a nearly table-free approach.
The only table is a single, conditional one for Outlook. Mark Robbins has
made significant progress on getting rid of even that. There’s still work
to be done, but that work is flying in the face of best practices.

Another avenue for experimentation is using new page layout techniques
like CSS grid. CSS grid is an entirely new specification for coding layouts
that gets away from tables and things like floats. It only recently saw
adoption in the web world when most major browsers started supporting
in back in March of 2017. While it doesn’t work everywhere, both Litmus
and Action Rocket have put it to use in live campaigns that are sent to
thousands of subscribers.

Mark Robbins and the crew at Rebel have taken interactive email so far
that they now have a viable shopping cart solution for the inbox. You
can literally browse products, select options and sizes, and pay for your
clothes right from an HTML email campaign. They even have an API that
allows you to build that functionality into your own campaigns. All
because they didn’t stick to best practices.

�219

https://www.rodriguezcommaj.com/blog/nearly-table-free-emails
http://blog.gorebel.com/get-off-the-table/
https://litmus.com/community/discussions/6489-using-css-grid-for-the-latest-litmus-newsletter-layout
https://medium.com/action-rocket/css-grid-in-email-making-fallbacks-work-emailweekly-redesign-week-3-91b62d44cf30
https://gorebel.com/api.html

The Better Email on Design

A lot of people joke that building emails is like coding a website back in
1999, long before the web standards revolution. I’ve joked about it many
times (and sometimes still do), but we all need to move beyond that kind
of thinking. It’s only holding us and our industry back.

There is so much we can do in email these days it’s insane. And there is
so much happening in the web and design worlds that we can use as
inspiration for pushing the envelope in email. We just need to move
beyond best practices and experiment.

At the Litmus Live conference this past year, Kevin Mandeville had a great
talk on a future-forward approach to email. He addressed a lot of myths
prevalent in the email community, and dispelled them all. I think he
summed it up best when he said:

Code like it’s 2017. Fallback like it’s 1999.

I just want you to keep that in mind when you’re creating your own
emails. Follow best practices when you need to, but stay curious and try
new things. I have my own little motto that I try to stick to:

Try. Make. Learn. Repeat.

I hope that you try to do the same. Good luck.

�220

About the Author

  

Jason Rodriguez is a writer and designer from Michigan who helps
people better understand the web and email. He’s written a few books
on email design and marketing, contributed to industry publications like
A List Apart and CSS-Tricks, and frequently speaks at industry events.

https://www.rodriguezcommaj.com/newsletter
https://twitter.com/rodriguezcommaj
https://litmus.com/
https://www.rodriguezcommaj.com/speaking
https://www.rodriguezcommaj.com/books
https://alistapart.com/author/JasonRodriguez

More at https://thebetter.email

https://thebetter.email

	A Note on Sanity
	A Note on Resources
	Why email?
	Basic Email
	Development Tools
	The Building Blocks of Email
	Typography in Email
	Taking People Places
	Images in Email
	Understanding Mobile
	Responsive Email Design
	Different Layout Approaches
	Animation, Effects, and Interactivity
	Different Development Workflows
	Troubleshooting Emails
	Questioning Best Practices
	About the Author

